This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgcl.p | |- .+ = ( +g ` G ) |
|
| Assertion | subgcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgcl.p | |- .+ = ( +g ` G ) |
|
| 2 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 3 | 2 | subggrp | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 4 | 3 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( G |`s S ) e. Grp ) |
| 5 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. S ) |
|
| 6 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> S = ( Base ` ( G |`s S ) ) ) |
| 8 | 5 7 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. ( Base ` ( G |`s S ) ) ) |
| 9 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. S ) |
|
| 10 | 9 7 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. ( Base ` ( G |`s S ) ) ) |
| 11 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 12 | eqid | |- ( +g ` ( G |`s S ) ) = ( +g ` ( G |`s S ) ) |
|
| 13 | 11 12 | grpcl | |- ( ( ( G |`s S ) e. Grp /\ X e. ( Base ` ( G |`s S ) ) /\ Y e. ( Base ` ( G |`s S ) ) ) -> ( X ( +g ` ( G |`s S ) ) Y ) e. ( Base ` ( G |`s S ) ) ) |
| 14 | 4 8 10 13 | syl3anc | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X ( +g ` ( G |`s S ) ) Y ) e. ( Base ` ( G |`s S ) ) ) |
| 15 | 2 1 | ressplusg | |- ( S e. ( SubGrp ` G ) -> .+ = ( +g ` ( G |`s S ) ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> .+ = ( +g ` ( G |`s S ) ) ) |
| 17 | 16 | oveqd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) = ( X ( +g ` ( G |`s S ) ) Y ) ) |
| 18 | 14 17 7 | 3eltr4d | |- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |