This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzsubmcl.0 | |- .0. = ( 0g ` G ) |
|
| gsumzsubmcl.z | |- Z = ( Cntz ` G ) |
||
| gsumzsubmcl.g | |- ( ph -> G e. Mnd ) |
||
| gsumzsubmcl.a | |- ( ph -> A e. V ) |
||
| gsumzsubmcl.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
||
| gsumzsubmcl.f | |- ( ph -> F : A --> S ) |
||
| gsumzsubmcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzsubmcl.w | |- ( ph -> F finSupp .0. ) |
||
| Assertion | gsumzsubmcl | |- ( ph -> ( G gsum F ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzsubmcl.0 | |- .0. = ( 0g ` G ) |
|
| 2 | gsumzsubmcl.z | |- Z = ( Cntz ` G ) |
|
| 3 | gsumzsubmcl.g | |- ( ph -> G e. Mnd ) |
|
| 4 | gsumzsubmcl.a | |- ( ph -> A e. V ) |
|
| 5 | gsumzsubmcl.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
|
| 6 | gsumzsubmcl.f | |- ( ph -> F : A --> S ) |
|
| 7 | gsumzsubmcl.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 8 | gsumzsubmcl.w | |- ( ph -> F finSupp .0. ) |
|
| 9 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 10 | eqid | |- ( 0g ` ( G |`s S ) ) = ( 0g ` ( G |`s S ) ) |
|
| 11 | eqid | |- ( Cntz ` ( G |`s S ) ) = ( Cntz ` ( G |`s S ) ) |
|
| 12 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 13 | 12 | submmnd | |- ( S e. ( SubMnd ` G ) -> ( G |`s S ) e. Mnd ) |
| 14 | 5 13 | syl | |- ( ph -> ( G |`s S ) e. Mnd ) |
| 15 | 12 | submbas | |- ( S e. ( SubMnd ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 16 | 5 15 | syl | |- ( ph -> S = ( Base ` ( G |`s S ) ) ) |
| 17 | 16 | feq3d | |- ( ph -> ( F : A --> S <-> F : A --> ( Base ` ( G |`s S ) ) ) ) |
| 18 | 6 17 | mpbid | |- ( ph -> F : A --> ( Base ` ( G |`s S ) ) ) |
| 19 | 6 | frnd | |- ( ph -> ran F C_ S ) |
| 20 | 7 19 | ssind | |- ( ph -> ran F C_ ( ( Z ` ran F ) i^i S ) ) |
| 21 | 12 2 11 | resscntz | |- ( ( S e. ( SubMnd ` G ) /\ ran F C_ S ) -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) ) |
| 22 | 5 19 21 | syl2anc | |- ( ph -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) ) |
| 23 | 20 22 | sseqtrrd | |- ( ph -> ran F C_ ( ( Cntz ` ( G |`s S ) ) ` ran F ) ) |
| 24 | 12 1 | subm0 | |- ( S e. ( SubMnd ` G ) -> .0. = ( 0g ` ( G |`s S ) ) ) |
| 25 | 5 24 | syl | |- ( ph -> .0. = ( 0g ` ( G |`s S ) ) ) |
| 26 | 8 25 | breqtrd | |- ( ph -> F finSupp ( 0g ` ( G |`s S ) ) ) |
| 27 | 9 10 11 14 4 18 23 26 | gsumzcl | |- ( ph -> ( ( G |`s S ) gsum F ) e. ( Base ` ( G |`s S ) ) ) |
| 28 | 4 5 6 12 | gsumsubm | |- ( ph -> ( G gsum F ) = ( ( G |`s S ) gsum F ) ) |
| 29 | 27 28 16 | 3eltr4d | |- ( ph -> ( G gsum F ) e. S ) |