This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019) (Proof shortened by OpenAI, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| dprdff.1 | |- ( ph -> G dom DProd S ) |
||
| dprdff.2 | |- ( ph -> dom S = I ) |
||
| dprdwd.3 | |- ( ( ph /\ x e. I ) -> A e. ( S ` x ) ) |
||
| dprdwd.4 | |- ( ph -> ( x e. I |-> A ) finSupp .0. ) |
||
| Assertion | dprdwd | |- ( ph -> ( x e. I |-> A ) e. W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 2 | dprdff.1 | |- ( ph -> G dom DProd S ) |
|
| 3 | dprdff.2 | |- ( ph -> dom S = I ) |
|
| 4 | dprdwd.3 | |- ( ( ph /\ x e. I ) -> A e. ( S ` x ) ) |
|
| 5 | dprdwd.4 | |- ( ph -> ( x e. I |-> A ) finSupp .0. ) |
|
| 6 | breq1 | |- ( h = ( x e. I |-> A ) -> ( h finSupp .0. <-> ( x e. I |-> A ) finSupp .0. ) ) |
|
| 7 | 4 | ralrimiva | |- ( ph -> A. x e. I A e. ( S ` x ) ) |
| 8 | 2 3 | dprddomcld | |- ( ph -> I e. _V ) |
| 9 | mptelixpg | |- ( I e. _V -> ( ( x e. I |-> A ) e. X_ x e. I ( S ` x ) <-> A. x e. I A e. ( S ` x ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> ( ( x e. I |-> A ) e. X_ x e. I ( S ` x ) <-> A. x e. I A e. ( S ` x ) ) ) |
| 11 | 7 10 | mpbird | |- ( ph -> ( x e. I |-> A ) e. X_ x e. I ( S ` x ) ) |
| 12 | fveq2 | |- ( x = i -> ( S ` x ) = ( S ` i ) ) |
|
| 13 | 12 | cbvixpv | |- X_ x e. I ( S ` x ) = X_ i e. I ( S ` i ) |
| 14 | 11 13 | eleqtrdi | |- ( ph -> ( x e. I |-> A ) e. X_ i e. I ( S ` i ) ) |
| 15 | 6 14 5 | elrabd | |- ( ph -> ( x e. I |-> A ) e. { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
| 16 | 15 1 | eleqtrrdi | |- ( ph -> ( x e. I |-> A ) e. W ) |