This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppres.s | |- ( ph -> F finSupp Z ) |
|
| fsuppres.z | |- ( ph -> Z e. V ) |
||
| Assertion | fsuppres | |- ( ph -> ( F |` X ) finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppres.s | |- ( ph -> F finSupp Z ) |
|
| 2 | fsuppres.z | |- ( ph -> Z e. V ) |
|
| 3 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) |
|
| 4 | relprcnfsupp | |- ( -. F e. _V -> -. F finSupp Z ) |
|
| 5 | 4 | con4i | |- ( F finSupp Z -> F e. _V ) |
| 6 | 1 5 | syl | |- ( ph -> F e. _V ) |
| 7 | 6 2 | jca | |- ( ph -> ( F e. _V /\ Z e. V ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ Fun F ) -> ( F e. _V /\ Z e. V ) ) |
| 9 | ressuppss | |- ( ( F e. _V /\ Z e. V ) -> ( ( F |` X ) supp Z ) C_ ( F supp Z ) ) |
|
| 10 | ssfi | |- ( ( ( F supp Z ) e. Fin /\ ( ( F |` X ) supp Z ) C_ ( F supp Z ) ) -> ( ( F |` X ) supp Z ) e. Fin ) |
|
| 11 | 10 | expcom | |- ( ( ( F |` X ) supp Z ) C_ ( F supp Z ) -> ( ( F supp Z ) e. Fin -> ( ( F |` X ) supp Z ) e. Fin ) ) |
| 12 | 8 9 11 | 3syl | |- ( ( ph /\ Fun F ) -> ( ( F supp Z ) e. Fin -> ( ( F |` X ) supp Z ) e. Fin ) ) |
| 13 | 12 | expcom | |- ( Fun F -> ( ph -> ( ( F supp Z ) e. Fin -> ( ( F |` X ) supp Z ) e. Fin ) ) ) |
| 14 | 13 | com23 | |- ( Fun F -> ( ( F supp Z ) e. Fin -> ( ph -> ( ( F |` X ) supp Z ) e. Fin ) ) ) |
| 15 | 14 | imp | |- ( ( Fun F /\ ( F supp Z ) e. Fin ) -> ( ph -> ( ( F |` X ) supp Z ) e. Fin ) ) |
| 16 | 3 15 | syl | |- ( F finSupp Z -> ( ph -> ( ( F |` X ) supp Z ) e. Fin ) ) |
| 17 | 1 16 | mpcom | |- ( ph -> ( ( F |` X ) supp Z ) e. Fin ) |
| 18 | funres | |- ( Fun F -> Fun ( F |` X ) ) |
|
| 19 | 18 | adantr | |- ( ( Fun F /\ ( F supp Z ) e. Fin ) -> Fun ( F |` X ) ) |
| 20 | 1 3 19 | 3syl | |- ( ph -> Fun ( F |` X ) ) |
| 21 | resexg | |- ( F e. _V -> ( F |` X ) e. _V ) |
|
| 22 | 1 5 21 | 3syl | |- ( ph -> ( F |` X ) e. _V ) |
| 23 | funisfsupp | |- ( ( Fun ( F |` X ) /\ ( F |` X ) e. _V /\ Z e. V ) -> ( ( F |` X ) finSupp Z <-> ( ( F |` X ) supp Z ) e. Fin ) ) |
|
| 24 | 20 22 2 23 | syl3anc | |- ( ph -> ( ( F |` X ) finSupp Z <-> ( ( F |` X ) supp Z ) e. Fin ) ) |
| 25 | 17 24 | mpbird | |- ( ph -> ( F |` X ) finSupp Z ) |