This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of Gleason p. 134. When A is nonzero, this holds for all integers N , see expneg . (Contributed by NM, 20-May-2005) (Revised by Mario Carneiro, 2-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expp1 | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | seqp1 | |- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 2 3 | eleq2s | |- ( N e. NN -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
| 5 | 4 | adantl | |- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
| 6 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 7 | fvconst2g | |- ( ( A e. CC /\ ( N + 1 ) e. NN ) -> ( ( NN X. { A } ) ` ( N + 1 ) ) = A ) |
|
| 8 | 6 7 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( ( NN X. { A } ) ` ( N + 1 ) ) = A ) |
| 9 | 8 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
| 10 | 5 9 | eqtrd | |- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
| 11 | expnnval | |- ( ( A e. CC /\ ( N + 1 ) e. NN ) -> ( A ^ ( N + 1 ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) ) |
|
| 12 | 6 11 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( N + 1 ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) ) |
| 13 | expnnval | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
|
| 14 | 13 | oveq1d | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) x. A ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
| 15 | 10 12 14 | 3eqtr4d | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
| 16 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 17 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 18 | 16 17 | eqtr4d | |- ( A e. CC -> ( A ^ 1 ) = ( 1 x. A ) ) |
| 19 | 18 | adantr | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ 1 ) = ( 1 x. A ) ) |
| 20 | simpr | |- ( ( A e. CC /\ N = 0 ) -> N = 0 ) |
|
| 21 | 20 | oveq1d | |- ( ( A e. CC /\ N = 0 ) -> ( N + 1 ) = ( 0 + 1 ) ) |
| 22 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 23 | 21 22 | eqtrdi | |- ( ( A e. CC /\ N = 0 ) -> ( N + 1 ) = 1 ) |
| 24 | 23 | oveq2d | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ ( N + 1 ) ) = ( A ^ 1 ) ) |
| 25 | oveq2 | |- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
|
| 26 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 27 | 25 26 | sylan9eqr | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) |
| 28 | 27 | oveq1d | |- ( ( A e. CC /\ N = 0 ) -> ( ( A ^ N ) x. A ) = ( 1 x. A ) ) |
| 29 | 19 24 28 | 3eqtr4d | |- ( ( A e. CC /\ N = 0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
| 30 | 15 29 | jaodan | |- ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
| 31 | 1 30 | sylan2b | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |