This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoord2.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| monoord2.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
||
| monoord2.3 | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| Assertion | monoord2 | |- ( ph -> ( F ` N ) <_ ( F ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord2.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | monoord2.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
|
| 3 | monoord2.3 | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 4 | 2 | renegcld | |- ( ( ph /\ k e. ( M ... N ) ) -> -u ( F ` k ) e. RR ) |
| 5 | 4 | fmpttd | |- ( ph -> ( k e. ( M ... N ) |-> -u ( F ` k ) ) : ( M ... N ) --> RR ) |
| 6 | 5 | ffvelcdmda | |- ( ( ph /\ n e. ( M ... N ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) e. RR ) |
| 7 | 3 | ralrimiva | |- ( ph -> A. k e. ( M ... ( N - 1 ) ) ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 8 | fvoveq1 | |- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
|
| 9 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 10 | 8 9 | breq12d | |- ( k = n -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) ) |
| 11 | 10 | cbvralvw | |- ( A. k e. ( M ... ( N - 1 ) ) ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> A. n e. ( M ... ( N - 1 ) ) ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 12 | 7 11 | sylib | |- ( ph -> A. n e. ( M ... ( N - 1 ) ) ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 13 | 12 | r19.21bi | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 14 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 15 | 14 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( n + 1 ) ) e. RR ) ) |
| 16 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 17 | 16 | adantr | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 18 | fzp1elp1 | |- ( n e. ( M ... ( N - 1 ) ) -> ( n + 1 ) e. ( M ... ( ( N - 1 ) + 1 ) ) ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( M ... ( ( N - 1 ) + 1 ) ) ) |
| 20 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 21 | 1 20 | syl | |- ( ph -> N e. ZZ ) |
| 22 | 21 | zcnd | |- ( ph -> N e. CC ) |
| 23 | ax-1cn | |- 1 e. CC |
|
| 24 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 25 | 22 23 24 | sylancl | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 26 | 25 | oveq2d | |- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 28 | 19 27 | eleqtrd | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 29 | 15 17 28 | rspcdva | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
| 30 | 9 | eleq1d | |- ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) |
| 31 | fzssp1 | |- ( M ... ( N - 1 ) ) C_ ( M ... ( ( N - 1 ) + 1 ) ) |
|
| 32 | 31 26 | sseqtrid | |- ( ph -> ( M ... ( N - 1 ) ) C_ ( M ... N ) ) |
| 33 | 32 | sselda | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ( M ... N ) ) |
| 34 | 30 17 33 | rspcdva | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` n ) e. RR ) |
| 35 | 29 34 | lenegd | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( F ` ( n + 1 ) ) <_ ( F ` n ) <-> -u ( F ` n ) <_ -u ( F ` ( n + 1 ) ) ) ) |
| 36 | 13 35 | mpbid | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> -u ( F ` n ) <_ -u ( F ` ( n + 1 ) ) ) |
| 37 | 9 | negeqd | |- ( k = n -> -u ( F ` k ) = -u ( F ` n ) ) |
| 38 | eqid | |- ( k e. ( M ... N ) |-> -u ( F ` k ) ) = ( k e. ( M ... N ) |-> -u ( F ` k ) ) |
|
| 39 | negex | |- -u ( F ` n ) e. _V |
|
| 40 | 37 38 39 | fvmpt | |- ( n e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) = -u ( F ` n ) ) |
| 41 | 33 40 | syl | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) = -u ( F ` n ) ) |
| 42 | 14 | negeqd | |- ( k = ( n + 1 ) -> -u ( F ` k ) = -u ( F ` ( n + 1 ) ) ) |
| 43 | negex | |- -u ( F ` ( n + 1 ) ) e. _V |
|
| 44 | 42 38 43 | fvmpt | |- ( ( n + 1 ) e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) = -u ( F ` ( n + 1 ) ) ) |
| 45 | 28 44 | syl | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) = -u ( F ` ( n + 1 ) ) ) |
| 46 | 36 41 45 | 3brtr4d | |- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) <_ ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) ) |
| 47 | 1 6 46 | monoord | |- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) <_ ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) ) |
| 48 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 49 | 1 48 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 50 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 51 | 50 | negeqd | |- ( k = M -> -u ( F ` k ) = -u ( F ` M ) ) |
| 52 | negex | |- -u ( F ` M ) e. _V |
|
| 53 | 51 38 52 | fvmpt | |- ( M e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) = -u ( F ` M ) ) |
| 54 | 49 53 | syl | |- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) = -u ( F ` M ) ) |
| 55 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 56 | 1 55 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 57 | fveq2 | |- ( k = N -> ( F ` k ) = ( F ` N ) ) |
|
| 58 | 57 | negeqd | |- ( k = N -> -u ( F ` k ) = -u ( F ` N ) ) |
| 59 | negex | |- -u ( F ` N ) e. _V |
|
| 60 | 58 38 59 | fvmpt | |- ( N e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) = -u ( F ` N ) ) |
| 61 | 56 60 | syl | |- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) = -u ( F ` N ) ) |
| 62 | 47 54 61 | 3brtr3d | |- ( ph -> -u ( F ` M ) <_ -u ( F ` N ) ) |
| 63 | 57 | eleq1d | |- ( k = N -> ( ( F ` k ) e. RR <-> ( F ` N ) e. RR ) ) |
| 64 | 63 16 56 | rspcdva | |- ( ph -> ( F ` N ) e. RR ) |
| 65 | 50 | eleq1d | |- ( k = M -> ( ( F ` k ) e. RR <-> ( F ` M ) e. RR ) ) |
| 66 | 65 16 49 | rspcdva | |- ( ph -> ( F ` M ) e. RR ) |
| 67 | 64 66 | lenegd | |- ( ph -> ( ( F ` N ) <_ ( F ` M ) <-> -u ( F ` M ) <_ -u ( F ` N ) ) ) |
| 68 | 62 67 | mpbird | |- ( ph -> ( F ` N ) <_ ( F ` M ) ) |