This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy condensation test. If a ( k ) is a decreasing sequence of nonnegative terms, then sum_ k e. NN a ( k ) converges iff sum_ n e. NN0 2 ^ n x. a ( 2 ^ n ) converges. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
||
| climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
||
| climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
||
| Assertion | climcnds | |- ( ph -> ( seq 1 ( + , F ) e. dom ~~> <-> seq 0 ( + , G ) e. dom ~~> ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcnds.1 | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
|
| 2 | climcnds.2 | |- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
|
| 3 | climcnds.3 | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
|
| 4 | climcnds.4 | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 1zzd | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> 1 e. ZZ ) |
|
| 7 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 8 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 9 | 2nn | |- 2 e. NN |
|
| 10 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 11 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 12 | 9 10 11 | sylancr | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
| 13 | 12 | nnred | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
| 14 | fveq2 | |- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
|
| 15 | 14 | eleq1d | |- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
| 16 | 1 | ralrimiva | |- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
| 17 | 16 | adantr | |- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
| 18 | 15 17 12 | rspcdva | |- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
| 19 | 13 18 | remulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
| 20 | 4 19 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
| 21 | 8 20 | sylan2 | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 22 | 5 7 21 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 23 | 22 | adantr | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) : NN --> RR ) |
| 24 | simpr | |- ( ( ph /\ j e. NN ) -> j e. NN ) |
|
| 25 | 24 5 | eleqtrdi | |- ( ( ph /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 26 | nnz | |- ( j e. NN -> j e. ZZ ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ j e. NN ) -> j e. ZZ ) |
| 28 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 29 | peano2uz | |- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
|
| 30 | 27 28 29 | 3syl | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
| 31 | simpl | |- ( ( ph /\ j e. NN ) -> ph ) |
|
| 32 | elfznn | |- ( n e. ( 1 ... ( j + 1 ) ) -> n e. NN ) |
|
| 33 | 31 32 21 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ n e. ( 1 ... ( j + 1 ) ) ) -> ( G ` n ) e. RR ) |
| 34 | simpll | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ph ) |
|
| 35 | elfz1eq | |- ( n e. ( ( j + 1 ) ... ( j + 1 ) ) -> n = ( j + 1 ) ) |
|
| 36 | 35 | adantl | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> n = ( j + 1 ) ) |
| 37 | nnnn0 | |- ( j e. NN -> j e. NN0 ) |
|
| 38 | peano2nn0 | |- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
|
| 39 | 37 38 | syl | |- ( j e. NN -> ( j + 1 ) e. NN0 ) |
| 40 | 39 | ad2antlr | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ( j + 1 ) e. NN0 ) |
| 41 | 36 40 | eqeltrd | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> n e. NN0 ) |
| 42 | 12 | nnnn0d | |- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN0 ) |
| 43 | 42 | nn0ge0d | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( 2 ^ n ) ) |
| 44 | 14 | breq2d | |- ( k = ( 2 ^ n ) -> ( 0 <_ ( F ` k ) <-> 0 <_ ( F ` ( 2 ^ n ) ) ) ) |
| 45 | 2 | ralrimiva | |- ( ph -> A. k e. NN 0 <_ ( F ` k ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ n e. NN0 ) -> A. k e. NN 0 <_ ( F ` k ) ) |
| 47 | 44 46 12 | rspcdva | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( F ` ( 2 ^ n ) ) ) |
| 48 | 13 18 43 47 | mulge0d | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
| 49 | 48 4 | breqtrrd | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( G ` n ) ) |
| 50 | 34 41 49 | syl2anc | |- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( G ` n ) ) |
| 51 | 25 30 33 50 | sermono | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
| 52 | 51 | adantlr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
| 53 | 2re | |- 2 e. RR |
|
| 54 | eqidd | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 55 | 1 | adantlr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 56 | simpr | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) e. dom ~~> ) |
|
| 57 | 5 6 54 55 56 | isumrecl | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> sum_ k e. NN ( F ` k ) e. RR ) |
| 58 | remulcl | |- ( ( 2 e. RR /\ sum_ k e. NN ( F ` k ) e. RR ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
|
| 59 | 53 57 58 | sylancr | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
| 60 | 23 | ffvelcdmda | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) e. RR ) |
| 61 | 5 7 1 | serfre | |- ( ph -> seq 1 ( + , F ) : NN --> RR ) |
| 62 | 61 | ad2antrr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) : NN --> RR ) |
| 63 | 37 | adantl | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> j e. NN0 ) |
| 64 | nnexpcl | |- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
|
| 65 | 9 63 64 | sylancr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
| 66 | 62 65 | ffvelcdmd | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
| 67 | remulcl | |- ( ( 2 e. RR /\ ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
|
| 68 | 53 66 67 | sylancr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
| 69 | 59 | adantr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
| 70 | 1 2 3 4 | climcndslem2 | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
| 71 | 70 | adantlr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
| 72 | eqidd | |- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 73 | 65 5 | eleqtrdi | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ j ) e. ( ZZ>= ` 1 ) ) |
| 74 | simpll | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ph ) |
|
| 75 | elfznn | |- ( k e. ( 1 ... ( 2 ^ j ) ) -> k e. NN ) |
|
| 76 | 1 | recnd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 77 | 74 75 76 | syl2an | |- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) e. CC ) |
| 78 | 72 73 77 | fsumser | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
| 79 | 1zzd | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 1 e. ZZ ) |
|
| 80 | fzfid | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) e. Fin ) |
|
| 81 | 75 | ssriv | |- ( 1 ... ( 2 ^ j ) ) C_ NN |
| 82 | 81 | a1i | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) C_ NN ) |
| 83 | eqidd | |- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 84 | 1 | ad4ant14 | |- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 85 | 2 | ad4ant14 | |- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
| 86 | simplr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) e. dom ~~> ) |
|
| 87 | 5 79 80 82 83 84 85 86 | isumless | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) <_ sum_ k e. NN ( F ` k ) ) |
| 88 | 78 87 | eqbrtrrd | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) <_ sum_ k e. NN ( F ` k ) ) |
| 89 | 57 | adantr | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. NN ( F ` k ) e. RR ) |
| 90 | 2rp | |- 2 e. RR+ |
|
| 91 | 90 | a1i | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 2 e. RR+ ) |
| 92 | 66 89 91 | lemul2d | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) <_ sum_ k e. NN ( F ` k ) <-> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) ) |
| 93 | 88 92 | mpbid | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
| 94 | 60 68 69 71 93 | letrd | |- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
| 95 | 94 | ralrimiva | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> A. j e. NN ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
| 96 | brralrspcev | |- ( ( ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR /\ A. j e. NN ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) -> E. x e. RR A. j e. NN ( seq 1 ( + , G ) ` j ) <_ x ) |
|
| 97 | 59 95 96 | syl2anc | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. j e. NN ( seq 1 ( + , G ) ` j ) <_ x ) |
| 98 | 5 6 23 52 97 | climsup | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) ~~> sup ( ran seq 1 ( + , G ) , RR , < ) ) |
| 99 | climrel | |- Rel ~~> |
|
| 100 | 99 | releldmi | |- ( seq 1 ( + , G ) ~~> sup ( ran seq 1 ( + , G ) , RR , < ) -> seq 1 ( + , G ) e. dom ~~> ) |
| 101 | 98 100 | syl | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) e. dom ~~> ) |
| 102 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 103 | 1nn0 | |- 1 e. NN0 |
|
| 104 | 103 | a1i | |- ( ph -> 1 e. NN0 ) |
| 105 | 20 | recnd | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. CC ) |
| 106 | 102 104 105 | iserex | |- ( ph -> ( seq 0 ( + , G ) e. dom ~~> <-> seq 1 ( + , G ) e. dom ~~> ) ) |
| 107 | 106 | biimpar | |- ( ( ph /\ seq 1 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 108 | 101 107 | syldan | |- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 109 | 1zzd | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> 1 e. ZZ ) |
|
| 110 | 61 | adantr | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) : NN --> RR ) |
| 111 | elfznn | |- ( k e. ( 1 ... ( j + 1 ) ) -> k e. NN ) |
|
| 112 | 31 111 1 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( j + 1 ) ) ) -> ( F ` k ) e. RR ) |
| 113 | simpll | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ph ) |
|
| 114 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 115 | 114 | adantl | |- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 116 | elfz1eq | |- ( k e. ( ( j + 1 ) ... ( j + 1 ) ) -> k = ( j + 1 ) ) |
|
| 117 | eleq1 | |- ( k = ( j + 1 ) -> ( k e. NN <-> ( j + 1 ) e. NN ) ) |
|
| 118 | 117 | biimparc | |- ( ( ( j + 1 ) e. NN /\ k = ( j + 1 ) ) -> k e. NN ) |
| 119 | 115 116 118 | syl2an | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> k e. NN ) |
| 120 | 113 119 2 | syl2anc | |- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( F ` k ) ) |
| 121 | 25 30 112 120 | sermono | |- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( j + 1 ) ) ) |
| 122 | 121 | adantlr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( j + 1 ) ) ) |
| 123 | 0zd | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> 0 e. ZZ ) |
|
| 124 | eqidd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ n e. NN0 ) -> ( G ` n ) = ( G ` n ) ) |
|
| 125 | 20 | adantlr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
| 126 | simpr | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
|
| 127 | 102 123 124 125 126 | isumrecl | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> sum_ n e. NN0 ( G ` n ) e. RR ) |
| 128 | 110 | ffvelcdmda | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) e. RR ) |
| 129 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 130 | 102 129 20 | serfre | |- ( ph -> seq 0 ( + , G ) : NN0 --> RR ) |
| 131 | 130 | adantr | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) : NN0 --> RR ) |
| 132 | ffvelcdm | |- ( ( seq 0 ( + , G ) : NN0 --> RR /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
|
| 133 | 131 37 132 | syl2an | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
| 134 | 127 | adantr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. NN0 ( G ` n ) e. RR ) |
| 135 | 110 | adantr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) : NN --> RR ) |
| 136 | simpr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. NN ) |
|
| 137 | 26 | adantl | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ZZ ) |
| 138 | 39 | adantl | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. NN0 ) |
| 139 | 138 | nn0red | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. RR ) |
| 140 | nnexpcl | |- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
|
| 141 | 9 138 140 | sylancr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
| 142 | 141 | nnred | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
| 143 | 2z | |- 2 e. ZZ |
|
| 144 | uzid | |- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
|
| 145 | 143 144 | ax-mp | |- 2 e. ( ZZ>= ` 2 ) |
| 146 | bernneq3 | |- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( j + 1 ) e. NN0 ) -> ( j + 1 ) < ( 2 ^ ( j + 1 ) ) ) |
|
| 147 | 145 138 146 | sylancr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) < ( 2 ^ ( j + 1 ) ) ) |
| 148 | 139 142 147 | ltled | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
| 149 | 137 | peano2zd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. ZZ ) |
| 150 | 141 | nnzd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
| 151 | eluz | |- ( ( ( j + 1 ) e. ZZ /\ ( 2 ^ ( j + 1 ) ) e. ZZ ) -> ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) <-> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
|
| 152 | 149 150 151 | syl2anc | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) <-> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
| 153 | 148 152 | mpbird | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) ) |
| 154 | eluzp1m1 | |- ( ( j e. ZZ /\ ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) |
|
| 155 | 137 153 154 | syl2anc | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) |
| 156 | eluznn | |- ( ( j e. NN /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
|
| 157 | 136 155 156 | syl2anc | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
| 158 | 135 157 | ffvelcdmd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. RR ) |
| 159 | 25 | adantlr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 160 | simpll | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ph ) |
|
| 161 | elfznn | |- ( k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. NN ) |
|
| 162 | 160 161 1 | syl2an | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
| 163 | 114 | adantl | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. NN ) |
| 164 | elfzuz | |- ( k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( j + 1 ) ) ) |
|
| 165 | eluznn | |- ( ( ( j + 1 ) e. NN /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. NN ) |
|
| 166 | 163 164 165 | syl2an | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> k e. NN ) |
| 167 | 160 166 2 | syl2an2r | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> 0 <_ ( F ` k ) ) |
| 168 | 159 155 162 167 | sermono | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
| 169 | 37 | adantl | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. NN0 ) |
| 170 | 1 2 3 4 | climcndslem1 | |- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) |
| 171 | 160 169 170 | syl2anc | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) |
| 172 | 128 158 133 168 171 | letrd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 0 ( + , G ) ` j ) ) |
| 173 | eqidd | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. ( 0 ... j ) ) -> ( G ` n ) = ( G ` n ) ) |
|
| 174 | 169 102 | eleqtrdi | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ( ZZ>= ` 0 ) ) |
| 175 | elfznn0 | |- ( n e. ( 0 ... j ) -> n e. NN0 ) |
|
| 176 | 160 175 105 | syl2an | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. ( 0 ... j ) ) -> ( G ` n ) e. CC ) |
| 177 | 173 174 176 | fsumser | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. ( 0 ... j ) ( G ` n ) = ( seq 0 ( + , G ) ` j ) ) |
| 178 | 0zd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> 0 e. ZZ ) |
|
| 179 | fzfid | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 0 ... j ) e. Fin ) |
|
| 180 | 175 | ssriv | |- ( 0 ... j ) C_ NN0 |
| 181 | 180 | a1i | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 0 ... j ) C_ NN0 ) |
| 182 | eqidd | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> ( G ` n ) = ( G ` n ) ) |
|
| 183 | 20 | ad4ant14 | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
| 184 | 49 | ad4ant14 | |- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> 0 <_ ( G ` n ) ) |
| 185 | simplr | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> seq 0 ( + , G ) e. dom ~~> ) |
|
| 186 | 102 178 179 181 182 183 184 185 | isumless | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. ( 0 ... j ) ( G ` n ) <_ sum_ n e. NN0 ( G ` n ) ) |
| 187 | 177 186 | eqbrtrrd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 0 ( + , G ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
| 188 | 128 133 134 172 187 | letrd | |- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
| 189 | 188 | ralrimiva | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> A. j e. NN ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
| 190 | brralrspcev | |- ( ( sum_ n e. NN0 ( G ` n ) e. RR /\ A. j e. NN ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) -> E. x e. RR A. j e. NN ( seq 1 ( + , F ) ` j ) <_ x ) |
|
| 191 | 127 189 190 | syl2anc | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> E. x e. RR A. j e. NN ( seq 1 ( + , F ) ` j ) <_ x ) |
| 192 | 5 109 110 122 191 | climsup | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) ~~> sup ( ran seq 1 ( + , F ) , RR , < ) ) |
| 193 | 99 | releldmi | |- ( seq 1 ( + , F ) ~~> sup ( ran seq 1 ( + , F ) , RR , < ) -> seq 1 ( + , F ) e. dom ~~> ) |
| 194 | 192 193 | syl | |- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) e. dom ~~> ) |
| 195 | 108 194 | impbida | |- ( ph -> ( seq 1 ( + , F ) e. dom ~~> <-> seq 0 ( + , G ) e. dom ~~> ) ) |