This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | le2add | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B <_ D ) -> ( A + B ) <_ ( C + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
|
| 2 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
|
| 3 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
|
| 4 | leadd1 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A <_ C <-> ( A + B ) <_ ( C + B ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A <_ C <-> ( A + B ) <_ ( C + B ) ) ) |
| 6 | simprr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
|
| 7 | leadd2 | |- ( ( B e. RR /\ D e. RR /\ C e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
|
| 8 | 3 6 2 7 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
| 9 | 5 8 | anbi12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B <_ D ) <-> ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) ) ) |
| 10 | 1 3 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + B ) e. RR ) |
| 11 | 2 3 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + B ) e. RR ) |
| 12 | 2 6 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + D ) e. RR ) |
| 13 | letr | |- ( ( ( A + B ) e. RR /\ ( C + B ) e. RR /\ ( C + D ) e. RR ) -> ( ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) <_ ( C + D ) ) ) |
|
| 14 | 10 11 12 13 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) <_ ( C + D ) ) ) |
| 15 | 9 14 | sylbid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B <_ D ) -> ( A + B ) <_ ( C + D ) ) ) |