This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | |- F e. _V |
|
| Assertion | shftval | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | |- F e. _V |
|
| 2 | 1 | shftfib | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |
| 3 | 2 | eleq2d | |- ( ( A e. CC /\ B e. CC ) -> ( x e. ( ( F shift A ) " { B } ) <-> x e. ( F " { ( B - A ) } ) ) ) |
| 4 | 3 | iotabidv | |- ( ( A e. CC /\ B e. CC ) -> ( iota x x e. ( ( F shift A ) " { B } ) ) = ( iota x x e. ( F " { ( B - A ) } ) ) ) |
| 5 | dffv3 | |- ( ( F shift A ) ` B ) = ( iota x x e. ( ( F shift A ) " { B } ) ) |
|
| 6 | dffv3 | |- ( F ` ( B - A ) ) = ( iota x x e. ( F " { ( B - A ) } ) ) |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) |