This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isershft.1 | |- F e. _V |
|
| Assertion | isershft | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq M ( .+ , F ) ~~> A <-> seq ( M + N ) ( .+ , ( F shift N ) ) ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isershft.1 | |- F e. _V |
|
| 2 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 3 | 1 | seqshft | |- ( ( ( M + N ) e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) ) |
| 4 | 2 3 | sylancom | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) ) |
| 5 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | pncan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + N ) - N ) = M ) |
| 9 | 8 | seqeq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq ( ( M + N ) - N ) ( .+ , F ) = seq M ( .+ , F ) ) |
| 10 | 9 | oveq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( ( M + N ) - N ) ( .+ , F ) shift N ) = ( seq M ( .+ , F ) shift N ) ) |
| 11 | 4 10 | eqtrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq ( M + N ) ( .+ , ( F shift N ) ) = ( seq M ( .+ , F ) shift N ) ) |
| 12 | 11 | breq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( M + N ) ( .+ , ( F shift N ) ) ~~> A <-> ( seq M ( .+ , F ) shift N ) ~~> A ) ) |
| 13 | seqex | |- seq M ( .+ , F ) e. _V |
|
| 14 | climshft | |- ( ( N e. ZZ /\ seq M ( .+ , F ) e. _V ) -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) |
|
| 15 | 13 14 | mpan2 | |- ( N e. ZZ -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) |
| 16 | 15 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( seq M ( .+ , F ) shift N ) ~~> A <-> seq M ( .+ , F ) ~~> A ) ) |
| 17 | 12 16 | bitr2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq M ( .+ , F ) ~~> A <-> seq ( M + N ) ( .+ , ( F shift N ) ) ~~> A ) ) |