This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expm1t | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 4 | 1 2 3 | sylancl | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 5 | 4 | oveq2d | |- ( N e. NN -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
| 6 | 5 | adantl | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
| 7 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 8 | expp1 | |- ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 10 | 6 9 | eqtr3d | |- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |