This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sersub.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| sersub.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| sersub.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
||
| sersub.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
||
| Assertion | sersub | |- ( ph -> ( seq M ( + , H ) ` N ) = ( ( seq M ( + , F ) ` N ) - ( seq M ( + , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sersub.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | sersub.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | sersub.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. CC ) |
|
| 4 | sersub.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
|
| 5 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
| 7 | subcl | |- ( ( x e. CC /\ y e. CC ) -> ( x - y ) e. CC ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x - y ) e. CC ) |
| 9 | addsub4 | |- ( ( ( x e. CC /\ y e. CC ) /\ ( z e. CC /\ w e. CC ) ) -> ( ( x + y ) - ( z + w ) ) = ( ( x - z ) + ( y - w ) ) ) |
|
| 10 | 9 | eqcomd | |- ( ( ( x e. CC /\ y e. CC ) /\ ( z e. CC /\ w e. CC ) ) -> ( ( x - z ) + ( y - w ) ) = ( ( x + y ) - ( z + w ) ) ) |
| 11 | 10 | adantl | |- ( ( ph /\ ( ( x e. CC /\ y e. CC ) /\ ( z e. CC /\ w e. CC ) ) ) -> ( ( x - z ) + ( y - w ) ) = ( ( x + y ) - ( z + w ) ) ) |
| 12 | 6 8 11 1 2 3 4 | seqcaopr2 | |- ( ph -> ( seq M ( + , H ) ` N ) = ( ( seq M ( + , F ) ` N ) - ( seq M ( + , G ) ` N ) ) ) |