This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to RR . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrtgioo.1 | ⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ℝ ) | |
| Assertion | xrtgioo | ⊢ ( topGen ‘ ran (,) ) = 𝐽 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrtgioo.1 | ⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ℝ ) | |
| 2 | letop | ⊢ ( ordTop ‘ ≤ ) ∈ Top | |
| 3 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 4 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 5 | 3 4 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 6 | iooordt | ⊢ ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) | |
| 7 | 6 | rgen2w | ⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) |
| 8 | ffnov | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ ( ordTop ‘ ≤ ) ) ) | |
| 9 | 5 7 8 | mpbir2an | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) |
| 10 | frn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ ( ordTop ‘ ≤ ) → ran (,) ⊆ ( ordTop ‘ ≤ ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ran (,) ⊆ ( ordTop ‘ ≤ ) |
| 12 | tgss | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ran (,) ⊆ ( ordTop ‘ ≤ ) ) → ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) ) ) | |
| 13 | 2 11 12 | mp2an | ⊢ ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ ( ordTop ‘ ≤ ) ) |
| 14 | tgtop | ⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ ) ) | |
| 15 | 2 14 | ax-mp | ⊢ ( topGen ‘ ( ordTop ‘ ≤ ) ) = ( ordTop ‘ ≤ ) |
| 16 | 13 15 | sseqtri | ⊢ ( topGen ‘ ran (,) ) ⊆ ( ordTop ‘ ≤ ) |
| 17 | 16 | sseli | ⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ordTop ‘ ≤ ) ) |
| 18 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 19 | toponss | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → 𝑥 ⊆ ℝ ) | |
| 20 | 18 19 | mpan | ⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ⊆ ℝ ) |
| 21 | reordt | ⊢ ℝ ∈ ( ordTop ‘ ≤ ) | |
| 22 | restopn2 | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ℝ ∈ ( ordTop ‘ ≤ ) ) → ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) ) ) | |
| 23 | 2 21 22 | mp2an | ⊢ ( 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ↔ ( 𝑥 ∈ ( ordTop ‘ ≤ ) ∧ 𝑥 ⊆ ℝ ) ) |
| 24 | 17 20 23 | sylanbrc | ⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
| 25 | 24 | ssriv | ⊢ ( topGen ‘ ran (,) ) ⊆ ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
| 26 | eqid | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 27 | eqid | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 28 | eqid | ⊢ ran (,) = ran (,) | |
| 29 | 26 27 28 | leordtval | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 30 | 29 | oveq1i | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) |
| 31 | 29 2 | eqeltrri | ⊢ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top |
| 32 | tgclb | ⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top ) | |
| 33 | 31 32 | mpbir | ⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases |
| 34 | reex | ⊢ ℝ ∈ V | |
| 35 | tgrest | ⊢ ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) ) | |
| 36 | 33 34 35 | mp2an | ⊢ ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) = ( ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ↾t ℝ ) |
| 37 | 30 36 | eqtr4i | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) |
| 38 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 39 | elrest | ⊢ ( ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ∧ ℝ ∈ V ) → ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) ) ) | |
| 40 | 33 34 39 | mp2an | ⊢ ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ↔ ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) ) |
| 41 | elun | ⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↔ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) ) | |
| 42 | elun | ⊢ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ↔ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ) | |
| 43 | eqid | ⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 44 | 43 | elrnmpt | ⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) ) ) |
| 45 | 44 | elv | ⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) ) |
| 46 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ* ) | |
| 47 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 48 | 47 | a1i | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → +∞ ∈ ℝ* ) |
| 49 | rexr | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) | |
| 50 | 49 | adantl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
| 51 | df-ioc | ⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) | |
| 52 | 51 | elixx3g | ⊢ ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 53 | 52 | baib | ⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 54 | 46 48 50 53 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 55 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 56 | 50 55 | syl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ +∞ ) |
| 57 | 56 | biantrud | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 58 | ltpnf | ⊢ ( 𝑦 ∈ ℝ → 𝑦 < +∞ ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → 𝑦 < +∞ ) |
| 60 | 59 | biantrud | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 61 | 54 57 60 | 3bitr2d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 62 | 61 | pm5.32da | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) ) |
| 63 | elin | ⊢ ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ∧ 𝑦 ∈ ℝ ) ) | |
| 64 | 63 | biancomi | ⊢ ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 (,] +∞ ) ) ) |
| 65 | 3anass | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 66 | 62 64 65 | 3bitr4g | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 67 | elioo2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 68 | 47 67 | mpan2 | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( 𝑥 (,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 69 | 66 68 | bitr4d | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ↔ 𝑦 ∈ ( 𝑥 (,) +∞ ) ) ) |
| 70 | 69 | eqrdv | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) = ( 𝑥 (,) +∞ ) ) |
| 71 | ioorebas | ⊢ ( 𝑥 (,) +∞ ) ∈ ran (,) | |
| 72 | 70 71 | eqeltrdi | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) ) |
| 73 | ineq1 | ⊢ ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) = ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ) | |
| 74 | 73 | eleq1d | ⊢ ( 𝑣 = ( 𝑥 (,] +∞ ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( 𝑥 (,] +∞ ) ∩ ℝ ) ∈ ran (,) ) ) |
| 75 | 72 74 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) |
| 76 | 75 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( 𝑥 (,] +∞ ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 77 | 45 76 | sylbi | ⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 78 | eqid | ⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 79 | 78 | elrnmpt | ⊢ ( 𝑣 ∈ V → ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) ) ) |
| 80 | 79 | elv | ⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) ) |
| 81 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 82 | 81 | a1i | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ ∈ ℝ* ) |
| 83 | df-ico | ⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) | |
| 84 | 83 | elixx3g | ⊢ ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 85 | 84 | baib | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 86 | 82 46 50 85 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 87 | mnfle | ⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) | |
| 88 | 50 87 | syl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ ≤ 𝑦 ) |
| 89 | 88 | biantrurd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 90 | mnflt | ⊢ ( 𝑦 ∈ ℝ → -∞ < 𝑦 ) | |
| 91 | 90 | adantl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → -∞ < 𝑦 ) |
| 92 | 91 | biantrurd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 93 | 86 89 92 | 3bitr2d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 94 | 93 | pm5.32da | ⊢ ( 𝑥 ∈ ℝ* → ( ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) ) |
| 95 | elin | ⊢ ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ∧ 𝑦 ∈ ℝ ) ) | |
| 96 | 95 | biancomi | ⊢ ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ ( -∞ [,) 𝑥 ) ) ) |
| 97 | 3anass | ⊢ ( ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) | |
| 98 | 94 96 97 | 3bitr4g | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 99 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) | |
| 100 | 81 99 | mpan | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( -∞ (,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ ∧ -∞ < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 101 | 98 100 | bitr4d | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑦 ∈ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ↔ 𝑦 ∈ ( -∞ (,) 𝑥 ) ) ) |
| 102 | 101 | eqrdv | ⊢ ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) = ( -∞ (,) 𝑥 ) ) |
| 103 | ioorebas | ⊢ ( -∞ (,) 𝑥 ) ∈ ran (,) | |
| 104 | 102 103 | eqeltrdi | ⊢ ( 𝑥 ∈ ℝ* → ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) ) |
| 105 | ineq1 | ⊢ ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) = ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ) | |
| 106 | 105 | eleq1d | ⊢ ( 𝑣 = ( -∞ [,) 𝑥 ) → ( ( 𝑣 ∩ ℝ ) ∈ ran (,) ↔ ( ( -∞ [,) 𝑥 ) ∩ ℝ ) ∈ ran (,) ) ) |
| 107 | 104 106 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) |
| 108 | 107 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℝ* 𝑣 = ( -∞ [,) 𝑥 ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 109 | 80 108 | sylbi | ⊢ ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 110 | 77 109 | jaoi | ⊢ ( ( 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∨ 𝑣 ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 111 | 42 110 | sylbi | ⊢ ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 112 | elssuni | ⊢ ( 𝑣 ∈ ran (,) → 𝑣 ⊆ ∪ ran (,) ) | |
| 113 | unirnioo | ⊢ ℝ = ∪ ran (,) | |
| 114 | 112 113 | sseqtrrdi | ⊢ ( 𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ ) |
| 115 | dfss2 | ⊢ ( 𝑣 ⊆ ℝ ↔ ( 𝑣 ∩ ℝ ) = 𝑣 ) | |
| 116 | 114 115 | sylib | ⊢ ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) = 𝑣 ) |
| 117 | id | ⊢ ( 𝑣 ∈ ran (,) → 𝑣 ∈ ran (,) ) | |
| 118 | 116 117 | eqeltrd | ⊢ ( 𝑣 ∈ ran (,) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 119 | 111 118 | jaoi | ⊢ ( ( 𝑣 ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∨ 𝑣 ∈ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 120 | 41 119 | sylbi | ⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑣 ∩ ℝ ) ∈ ran (,) ) |
| 121 | eleq1 | ⊢ ( 𝑢 = ( 𝑣 ∩ ℝ ) → ( 𝑢 ∈ ran (,) ↔ ( 𝑣 ∩ ℝ ) ∈ ran (,) ) ) | |
| 122 | 120 121 | syl5ibrcom | ⊢ ( 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) → ( 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) ) ) |
| 123 | 122 | rexlimiv | ⊢ ( ∃ 𝑣 ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) 𝑢 = ( 𝑣 ∩ ℝ ) → 𝑢 ∈ ran (,) ) |
| 124 | 40 123 | sylbi | ⊢ ( 𝑢 ∈ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) → 𝑢 ∈ ran (,) ) |
| 125 | 124 | ssriv | ⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,) |
| 126 | tgss | ⊢ ( ( ran (,) ∈ TopBases ∧ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ⊆ ran (,) ) → ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) ) ) | |
| 127 | 38 125 126 | mp2an | ⊢ ( topGen ‘ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ↾t ℝ ) ) ⊆ ( topGen ‘ ran (,) ) |
| 128 | 37 127 | eqsstri | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) ⊆ ( topGen ‘ ran (,) ) |
| 129 | 25 128 | eqssi | ⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
| 130 | 129 1 | eqtr4i | ⊢ ( topGen ‘ ran (,) ) = 𝐽 |