This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Open intervals are elements of the set of all open intervals. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioorebas | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( 𝐴 (,) 𝐵 ) = ∅ ) | |
| 2 | iooid | ⊢ ( 0 (,) 0 ) = ∅ | |
| 3 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 4 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 5 | 3 4 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 6 | 0xr | ⊢ 0 ∈ ℝ* | |
| 7 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 0 (,) 0 ) ∈ ran (,) ) | |
| 8 | 5 6 6 7 | mp3an | ⊢ ( 0 (,) 0 ) ∈ ran (,) |
| 9 | 2 8 | eqeltrri | ⊢ ∅ ∈ ran (,) |
| 10 | 1 9 | eqeltrdi | ⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 11 | n0 | ⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 12 | eliooxr | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) | |
| 13 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) | |
| 14 | 5 13 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 15 | 12 14 | syl | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 16 | 15 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 17 | 11 16 | sylbi | ⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 (,) 𝐵 ) ∈ ran (,) ) |
| 18 | 10 17 | pm2.61ine | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ran (,) |