This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show A e. RR* and B e. RR* . (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| Assertion | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | anass | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) | |
| 3 | df-3an | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ↔ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| 5 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) | |
| 7 | ibar | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) ) | |
| 8 | 6 7 | bitrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐶 ∈ ℝ* ∧ 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) ) |
| 9 | 5 8 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) ) |
| 10 | 1 | ixxf | ⊢ 𝑂 : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 11 | 10 | fdmi | ⊢ dom 𝑂 = ( ℝ* × ℝ* ) |
| 12 | 11 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = ∅ ) |
| 13 | 12 | eleq2d | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ 𝐶 ∈ ∅ ) ) |
| 14 | noel | ⊢ ¬ 𝐶 ∈ ∅ | |
| 15 | 14 | pm2.21i | ⊢ ( 𝐶 ∈ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 16 | simpl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) | |
| 17 | 15 16 | pm5.21ni | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ∅ ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) ) |
| 18 | 13 17 | bitrd | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) ) |
| 19 | 9 18 | pm2.61i | ⊢ ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) ) |
| 20 | 2 4 19 | 3bitr4ri | ⊢ ( 𝐶 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 𝑅 𝐶 ∧ 𝐶 𝑆 𝐵 ) ) ) |