This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property tgcl can be reversed: if the topology generated by B is actually a topology, then B must be a topological basis. This yields an alternative definition of TopBases . (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgclb | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcl | ⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 2 | 0opn | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → ∅ ∈ ( topGen ‘ 𝐵 ) ) | |
| 3 | 2 | elfvexd | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → 𝐵 ∈ V ) |
| 4 | bastg | ⊢ ( 𝐵 ∈ V → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 6 | 5 | sselda | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
| 7 | 5 | sselda | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ( topGen ‘ 𝐵 ) ) |
| 8 | 6 7 | anim12dan | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 9 | inopn | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( topGen ‘ 𝐵 ) ) | |
| 10 | 9 | 3expb | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ ( topGen ‘ 𝐵 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 11 | 8 10 | syldan | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 12 | tg2 | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ( topGen ‘ 𝐵 ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) | |
| 13 | 12 | ralrimiva | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ ( topGen ‘ 𝐵 ) → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 15 | 14 | ralrimivva | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 16 | isbasis2g | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 17 | 3 16 | syl | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 18 | 15 17 | mpbird | ⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → 𝐵 ∈ TopBases ) |
| 19 | 1 18 | impbii | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |