This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 30-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unirnioo | ⊢ ℝ = ∪ ran (,) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 2 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 3 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 4 | 2 3 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 7 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) ) | |
| 8 | 4 5 6 7 | mp3an | ⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
| 9 | 1 8 | eqeltrri | ⊢ ℝ ∈ ran (,) |
| 10 | elssuni | ⊢ ( ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,) ) | |
| 11 | 9 10 | ax-mp | ⊢ ℝ ⊆ ∪ ran (,) |
| 12 | frn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ ) | |
| 13 | 2 12 | ax-mp | ⊢ ran (,) ⊆ 𝒫 ℝ |
| 14 | sspwuni | ⊢ ( ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ ) | |
| 15 | 13 14 | mpbi | ⊢ ∪ ran (,) ⊆ ℝ |
| 16 | 11 15 | eqssi | ⊢ ℝ = ∪ ran (,) |