This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015) (Proof shortened by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgrest | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 𝐵 ↾t 𝐴 ) ∈ V | |
| 2 | eltg3 | ⊢ ( ( 𝐵 ↾t 𝐴 ) ∈ V → ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝐵 ∈ 𝑉 ) | |
| 5 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 7 | restval | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝐵 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 8 | 7 | sseq2d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ↔ 𝑦 ⊆ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝑦 ⊆ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 10 | inex1 | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 12 | 11 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ V |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) | |
| 14 | 13 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) Fn 𝐵 ) |
| 15 | fnima | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) Fn 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 16 | 12 14 15 | mp2b | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) |
| 17 | 9 16 | sseqtrrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → 𝑦 ⊆ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) ) |
| 18 | ssimaexg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ Fun ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ∧ 𝑦 ⊆ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝐵 ) ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) ) | |
| 19 | 4 6 17 18 | syl3anc | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) ) |
| 20 | df-ima | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ran ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) | |
| 21 | resmpt | ⊢ ( 𝑧 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 23 | 22 | rneqd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ran ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) ↾ 𝑧 ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 24 | 20 23 | eqtrid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 25 | 24 | unieqd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 26 | 11 | dfiun3 | ⊢ ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) = ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) |
| 27 | 25 26 | eqtr4di | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) ) |
| 28 | iunin1 | ⊢ ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) | |
| 29 | 27 28 | eqtrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ) |
| 30 | fvex | ⊢ ( topGen ‘ 𝐵 ) ∈ V | |
| 31 | simpr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → 𝐴 ∈ 𝑊 ) | |
| 32 | uniiun | ⊢ ∪ 𝑧 = ∪ 𝑥 ∈ 𝑧 𝑥 | |
| 33 | eltg3i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑧 ∈ ( topGen ‘ 𝐵 ) ) | |
| 34 | 32 33 | eqeltrrid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
| 35 | 34 | adantlr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) |
| 36 | elrestr | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ 𝑊 ∧ ∪ 𝑥 ∈ 𝑧 𝑥 ∈ ( topGen ‘ 𝐵 ) ) → ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) | |
| 37 | 30 31 35 36 | mp3an2ani | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
| 38 | 29 37 | eqeltrd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
| 39 | unieq | ⊢ ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ∪ 𝑦 = ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∪ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 41 | 38 40 | syl5ibrcom | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 42 | 41 | expimpd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 43 | 42 | exlimdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑦 = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ∩ 𝐴 ) ) “ 𝑧 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 45 | 19 44 | mpd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
| 46 | eleq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ↔ ∪ 𝑦 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) | |
| 47 | 45 46 | syl5ibrcom | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ) → ( 𝑥 = ∪ 𝑦 → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 48 | 47 | expimpd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 49 | 48 | exlimdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 ⊆ ( 𝐵 ↾t 𝐴 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 50 | 3 49 | biimtrid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) → 𝑥 ∈ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) ) |
| 51 | 50 | ssrdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ⊆ ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |
| 52 | restval | ⊢ ( ( ( topGen ‘ 𝐵 ) ∈ V ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ) | |
| 53 | 30 31 52 | sylancr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) = ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ) |
| 54 | eltg3 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) ) ) | |
| 55 | 54 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) ) ) |
| 56 | 32 | ineq1i | ⊢ ( ∪ 𝑧 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝑧 𝑥 ∩ 𝐴 ) |
| 57 | 56 28 | eqtr4i | ⊢ ( ∪ 𝑧 ∩ 𝐴 ) = ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) |
| 58 | simplll | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝐵 ∈ 𝑉 ) | |
| 59 | simpllr | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝐴 ∈ 𝑊 ) | |
| 60 | simpr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ 𝐵 ) | |
| 61 | 60 | sselda | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐵 ) |
| 62 | elrestr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐵 ↾t 𝐴 ) ) | |
| 63 | 58 59 61 62 | syl3anc | ⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑧 ) → ( 𝑥 ∩ 𝐴 ) ∈ ( 𝐵 ↾t 𝐴 ) ) |
| 64 | 63 | fmpttd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) : 𝑧 ⟶ ( 𝐵 ↾t 𝐴 ) ) |
| 65 | 64 | frnd | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐵 ↾t 𝐴 ) ) |
| 66 | eltg3i | ⊢ ( ( ( 𝐵 ↾t 𝐴 ) ∈ V ∧ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐵 ↾t 𝐴 ) ) → ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) | |
| 67 | 1 65 66 | sylancr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝑧 ↦ ( 𝑥 ∩ 𝐴 ) ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 68 | 26 67 | eqeltrid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ∪ 𝑥 ∈ 𝑧 ( 𝑥 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 69 | 57 68 | eqeltrid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( ∪ 𝑧 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 70 | ineq1 | ⊢ ( 𝑤 = ∪ 𝑧 → ( 𝑤 ∩ 𝐴 ) = ( ∪ 𝑧 ∩ 𝐴 ) ) | |
| 71 | 70 | eleq1d | ⊢ ( 𝑤 = ∪ 𝑧 → ( ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ↔ ( ∪ 𝑧 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
| 72 | 69 71 | syl5ibrcom | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑤 = ∪ 𝑧 → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
| 73 | 72 | expimpd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
| 74 | 73 | exlimdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑤 = ∪ 𝑧 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
| 75 | 55 74 | sylbid | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) ∧ 𝑤 ∈ ( topGen ‘ 𝐵 ) ) → ( 𝑤 ∩ 𝐴 ) ∈ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 77 | 76 | fmpttd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) : ( topGen ‘ 𝐵 ) ⟶ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 78 | 77 | frnd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ran ( 𝑤 ∈ ( topGen ‘ 𝐵 ) ↦ ( 𝑤 ∩ 𝐴 ) ) ⊆ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 79 | 53 78 | eqsstrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ⊆ ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) ) |
| 80 | 51 79 | eqssd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( topGen ‘ ( 𝐵 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝐵 ) ↾t 𝐴 ) ) |