This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgss | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ( 𝐶 ∩ 𝒫 𝑥 ) ) | |
| 2 | 1 | unissd | ⊢ ( 𝐵 ⊆ 𝐶 → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) |
| 3 | sstr2 | ⊢ ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → ( ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) | |
| 4 | 2 3 | syl5com | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 6 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) → 𝐵 ∈ V ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → 𝐵 ∈ V ) |
| 8 | eltg | ⊢ ( 𝐵 ∈ V → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 10 | eltg | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐶 ) ↔ 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐶 ) ↔ 𝑥 ⊆ ∪ ( 𝐶 ∩ 𝒫 𝑥 ) ) ) |
| 12 | 5 9 11 | 3imtr4d | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) → 𝑥 ∈ ( topGen ‘ 𝐶 ) ) ) |
| 13 | 12 | ssrdv | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |