This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to RR . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrtgioo.1 | |- J = ( ( ordTop ` <_ ) |`t RR ) |
|
| Assertion | xrtgioo | |- ( topGen ` ran (,) ) = J |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrtgioo.1 | |- J = ( ( ordTop ` <_ ) |`t RR ) |
|
| 2 | letop | |- ( ordTop ` <_ ) e. Top |
|
| 3 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 4 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 5 | 3 4 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 6 | iooordt | |- ( x (,) y ) e. ( ordTop ` <_ ) |
|
| 7 | 6 | rgen2w | |- A. x e. RR* A. y e. RR* ( x (,) y ) e. ( ordTop ` <_ ) |
| 8 | ffnov | |- ( (,) : ( RR* X. RR* ) --> ( ordTop ` <_ ) <-> ( (,) Fn ( RR* X. RR* ) /\ A. x e. RR* A. y e. RR* ( x (,) y ) e. ( ordTop ` <_ ) ) ) |
|
| 9 | 5 7 8 | mpbir2an | |- (,) : ( RR* X. RR* ) --> ( ordTop ` <_ ) |
| 10 | frn | |- ( (,) : ( RR* X. RR* ) --> ( ordTop ` <_ ) -> ran (,) C_ ( ordTop ` <_ ) ) |
|
| 11 | 9 10 | ax-mp | |- ran (,) C_ ( ordTop ` <_ ) |
| 12 | tgss | |- ( ( ( ordTop ` <_ ) e. Top /\ ran (,) C_ ( ordTop ` <_ ) ) -> ( topGen ` ran (,) ) C_ ( topGen ` ( ordTop ` <_ ) ) ) |
|
| 13 | 2 11 12 | mp2an | |- ( topGen ` ran (,) ) C_ ( topGen ` ( ordTop ` <_ ) ) |
| 14 | tgtop | |- ( ( ordTop ` <_ ) e. Top -> ( topGen ` ( ordTop ` <_ ) ) = ( ordTop ` <_ ) ) |
|
| 15 | 2 14 | ax-mp | |- ( topGen ` ( ordTop ` <_ ) ) = ( ordTop ` <_ ) |
| 16 | 13 15 | sseqtri | |- ( topGen ` ran (,) ) C_ ( ordTop ` <_ ) |
| 17 | 16 | sseli | |- ( x e. ( topGen ` ran (,) ) -> x e. ( ordTop ` <_ ) ) |
| 18 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 19 | toponss | |- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ x e. ( topGen ` ran (,) ) ) -> x C_ RR ) |
|
| 20 | 18 19 | mpan | |- ( x e. ( topGen ` ran (,) ) -> x C_ RR ) |
| 21 | reordt | |- RR e. ( ordTop ` <_ ) |
|
| 22 | restopn2 | |- ( ( ( ordTop ` <_ ) e. Top /\ RR e. ( ordTop ` <_ ) ) -> ( x e. ( ( ordTop ` <_ ) |`t RR ) <-> ( x e. ( ordTop ` <_ ) /\ x C_ RR ) ) ) |
|
| 23 | 2 21 22 | mp2an | |- ( x e. ( ( ordTop ` <_ ) |`t RR ) <-> ( x e. ( ordTop ` <_ ) /\ x C_ RR ) ) |
| 24 | 17 20 23 | sylanbrc | |- ( x e. ( topGen ` ran (,) ) -> x e. ( ( ordTop ` <_ ) |`t RR ) ) |
| 25 | 24 | ssriv | |- ( topGen ` ran (,) ) C_ ( ( ordTop ` <_ ) |`t RR ) |
| 26 | eqid | |- ran ( x e. RR* |-> ( x (,] +oo ) ) = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 27 | eqid | |- ran ( x e. RR* |-> ( -oo [,) x ) ) = ran ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 28 | eqid | |- ran (,) = ran (,) |
|
| 29 | 26 27 28 | leordtval | |- ( ordTop ` <_ ) = ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 30 | 29 | oveq1i | |- ( ( ordTop ` <_ ) |`t RR ) = ( ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |`t RR ) |
| 31 | 29 2 | eqeltrri | |- ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top |
| 32 | tgclb | |- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases <-> ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top ) |
|
| 33 | 31 32 | mpbir | |- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases |
| 34 | reex | |- RR e. _V |
|
| 35 | tgrest | |- ( ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases /\ RR e. _V ) -> ( topGen ` ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) ) = ( ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |`t RR ) ) |
|
| 36 | 33 34 35 | mp2an | |- ( topGen ` ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) ) = ( ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |`t RR ) |
| 37 | 30 36 | eqtr4i | |- ( ( ordTop ` <_ ) |`t RR ) = ( topGen ` ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) ) |
| 38 | retopbas | |- ran (,) e. TopBases |
|
| 39 | elrest | |- ( ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases /\ RR e. _V ) -> ( u e. ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) <-> E. v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) u = ( v i^i RR ) ) ) |
|
| 40 | 33 34 39 | mp2an | |- ( u e. ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) <-> E. v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) u = ( v i^i RR ) ) |
| 41 | elun | |- ( v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) <-> ( v e. ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) \/ v e. ran (,) ) ) |
|
| 42 | elun | |- ( v e. ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) <-> ( v e. ran ( x e. RR* |-> ( x (,] +oo ) ) \/ v e. ran ( x e. RR* |-> ( -oo [,) x ) ) ) ) |
|
| 43 | eqid | |- ( x e. RR* |-> ( x (,] +oo ) ) = ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 44 | 43 | elrnmpt | |- ( v e. _V -> ( v e. ran ( x e. RR* |-> ( x (,] +oo ) ) <-> E. x e. RR* v = ( x (,] +oo ) ) ) |
| 45 | 44 | elv | |- ( v e. ran ( x e. RR* |-> ( x (,] +oo ) ) <-> E. x e. RR* v = ( x (,] +oo ) ) |
| 46 | simpl | |- ( ( x e. RR* /\ y e. RR ) -> x e. RR* ) |
|
| 47 | pnfxr | |- +oo e. RR* |
|
| 48 | 47 | a1i | |- ( ( x e. RR* /\ y e. RR ) -> +oo e. RR* ) |
| 49 | rexr | |- ( y e. RR -> y e. RR* ) |
|
| 50 | 49 | adantl | |- ( ( x e. RR* /\ y e. RR ) -> y e. RR* ) |
| 51 | df-ioc | |- (,] = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a < c /\ c <_ b ) } ) |
|
| 52 | 51 | elixx3g | |- ( y e. ( x (,] +oo ) <-> ( ( x e. RR* /\ +oo e. RR* /\ y e. RR* ) /\ ( x < y /\ y <_ +oo ) ) ) |
| 53 | 52 | baib | |- ( ( x e. RR* /\ +oo e. RR* /\ y e. RR* ) -> ( y e. ( x (,] +oo ) <-> ( x < y /\ y <_ +oo ) ) ) |
| 54 | 46 48 50 53 | syl3anc | |- ( ( x e. RR* /\ y e. RR ) -> ( y e. ( x (,] +oo ) <-> ( x < y /\ y <_ +oo ) ) ) |
| 55 | pnfge | |- ( y e. RR* -> y <_ +oo ) |
|
| 56 | 50 55 | syl | |- ( ( x e. RR* /\ y e. RR ) -> y <_ +oo ) |
| 57 | 56 | biantrud | |- ( ( x e. RR* /\ y e. RR ) -> ( x < y <-> ( x < y /\ y <_ +oo ) ) ) |
| 58 | ltpnf | |- ( y e. RR -> y < +oo ) |
|
| 59 | 58 | adantl | |- ( ( x e. RR* /\ y e. RR ) -> y < +oo ) |
| 60 | 59 | biantrud | |- ( ( x e. RR* /\ y e. RR ) -> ( x < y <-> ( x < y /\ y < +oo ) ) ) |
| 61 | 54 57 60 | 3bitr2d | |- ( ( x e. RR* /\ y e. RR ) -> ( y e. ( x (,] +oo ) <-> ( x < y /\ y < +oo ) ) ) |
| 62 | 61 | pm5.32da | |- ( x e. RR* -> ( ( y e. RR /\ y e. ( x (,] +oo ) ) <-> ( y e. RR /\ ( x < y /\ y < +oo ) ) ) ) |
| 63 | elin | |- ( y e. ( ( x (,] +oo ) i^i RR ) <-> ( y e. ( x (,] +oo ) /\ y e. RR ) ) |
|
| 64 | 63 | biancomi | |- ( y e. ( ( x (,] +oo ) i^i RR ) <-> ( y e. RR /\ y e. ( x (,] +oo ) ) ) |
| 65 | 3anass | |- ( ( y e. RR /\ x < y /\ y < +oo ) <-> ( y e. RR /\ ( x < y /\ y < +oo ) ) ) |
|
| 66 | 62 64 65 | 3bitr4g | |- ( x e. RR* -> ( y e. ( ( x (,] +oo ) i^i RR ) <-> ( y e. RR /\ x < y /\ y < +oo ) ) ) |
| 67 | elioo2 | |- ( ( x e. RR* /\ +oo e. RR* ) -> ( y e. ( x (,) +oo ) <-> ( y e. RR /\ x < y /\ y < +oo ) ) ) |
|
| 68 | 47 67 | mpan2 | |- ( x e. RR* -> ( y e. ( x (,) +oo ) <-> ( y e. RR /\ x < y /\ y < +oo ) ) ) |
| 69 | 66 68 | bitr4d | |- ( x e. RR* -> ( y e. ( ( x (,] +oo ) i^i RR ) <-> y e. ( x (,) +oo ) ) ) |
| 70 | 69 | eqrdv | |- ( x e. RR* -> ( ( x (,] +oo ) i^i RR ) = ( x (,) +oo ) ) |
| 71 | ioorebas | |- ( x (,) +oo ) e. ran (,) |
|
| 72 | 70 71 | eqeltrdi | |- ( x e. RR* -> ( ( x (,] +oo ) i^i RR ) e. ran (,) ) |
| 73 | ineq1 | |- ( v = ( x (,] +oo ) -> ( v i^i RR ) = ( ( x (,] +oo ) i^i RR ) ) |
|
| 74 | 73 | eleq1d | |- ( v = ( x (,] +oo ) -> ( ( v i^i RR ) e. ran (,) <-> ( ( x (,] +oo ) i^i RR ) e. ran (,) ) ) |
| 75 | 72 74 | syl5ibrcom | |- ( x e. RR* -> ( v = ( x (,] +oo ) -> ( v i^i RR ) e. ran (,) ) ) |
| 76 | 75 | rexlimiv | |- ( E. x e. RR* v = ( x (,] +oo ) -> ( v i^i RR ) e. ran (,) ) |
| 77 | 45 76 | sylbi | |- ( v e. ran ( x e. RR* |-> ( x (,] +oo ) ) -> ( v i^i RR ) e. ran (,) ) |
| 78 | eqid | |- ( x e. RR* |-> ( -oo [,) x ) ) = ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 79 | 78 | elrnmpt | |- ( v e. _V -> ( v e. ran ( x e. RR* |-> ( -oo [,) x ) ) <-> E. x e. RR* v = ( -oo [,) x ) ) ) |
| 80 | 79 | elv | |- ( v e. ran ( x e. RR* |-> ( -oo [,) x ) ) <-> E. x e. RR* v = ( -oo [,) x ) ) |
| 81 | mnfxr | |- -oo e. RR* |
|
| 82 | 81 | a1i | |- ( ( x e. RR* /\ y e. RR ) -> -oo e. RR* ) |
| 83 | df-ico | |- [,) = ( a e. RR* , b e. RR* |-> { c e. RR* | ( a <_ c /\ c < b ) } ) |
|
| 84 | 83 | elixx3g | |- ( y e. ( -oo [,) x ) <-> ( ( -oo e. RR* /\ x e. RR* /\ y e. RR* ) /\ ( -oo <_ y /\ y < x ) ) ) |
| 85 | 84 | baib | |- ( ( -oo e. RR* /\ x e. RR* /\ y e. RR* ) -> ( y e. ( -oo [,) x ) <-> ( -oo <_ y /\ y < x ) ) ) |
| 86 | 82 46 50 85 | syl3anc | |- ( ( x e. RR* /\ y e. RR ) -> ( y e. ( -oo [,) x ) <-> ( -oo <_ y /\ y < x ) ) ) |
| 87 | mnfle | |- ( y e. RR* -> -oo <_ y ) |
|
| 88 | 50 87 | syl | |- ( ( x e. RR* /\ y e. RR ) -> -oo <_ y ) |
| 89 | 88 | biantrurd | |- ( ( x e. RR* /\ y e. RR ) -> ( y < x <-> ( -oo <_ y /\ y < x ) ) ) |
| 90 | mnflt | |- ( y e. RR -> -oo < y ) |
|
| 91 | 90 | adantl | |- ( ( x e. RR* /\ y e. RR ) -> -oo < y ) |
| 92 | 91 | biantrurd | |- ( ( x e. RR* /\ y e. RR ) -> ( y < x <-> ( -oo < y /\ y < x ) ) ) |
| 93 | 86 89 92 | 3bitr2d | |- ( ( x e. RR* /\ y e. RR ) -> ( y e. ( -oo [,) x ) <-> ( -oo < y /\ y < x ) ) ) |
| 94 | 93 | pm5.32da | |- ( x e. RR* -> ( ( y e. RR /\ y e. ( -oo [,) x ) ) <-> ( y e. RR /\ ( -oo < y /\ y < x ) ) ) ) |
| 95 | elin | |- ( y e. ( ( -oo [,) x ) i^i RR ) <-> ( y e. ( -oo [,) x ) /\ y e. RR ) ) |
|
| 96 | 95 | biancomi | |- ( y e. ( ( -oo [,) x ) i^i RR ) <-> ( y e. RR /\ y e. ( -oo [,) x ) ) ) |
| 97 | 3anass | |- ( ( y e. RR /\ -oo < y /\ y < x ) <-> ( y e. RR /\ ( -oo < y /\ y < x ) ) ) |
|
| 98 | 94 96 97 | 3bitr4g | |- ( x e. RR* -> ( y e. ( ( -oo [,) x ) i^i RR ) <-> ( y e. RR /\ -oo < y /\ y < x ) ) ) |
| 99 | elioo2 | |- ( ( -oo e. RR* /\ x e. RR* ) -> ( y e. ( -oo (,) x ) <-> ( y e. RR /\ -oo < y /\ y < x ) ) ) |
|
| 100 | 81 99 | mpan | |- ( x e. RR* -> ( y e. ( -oo (,) x ) <-> ( y e. RR /\ -oo < y /\ y < x ) ) ) |
| 101 | 98 100 | bitr4d | |- ( x e. RR* -> ( y e. ( ( -oo [,) x ) i^i RR ) <-> y e. ( -oo (,) x ) ) ) |
| 102 | 101 | eqrdv | |- ( x e. RR* -> ( ( -oo [,) x ) i^i RR ) = ( -oo (,) x ) ) |
| 103 | ioorebas | |- ( -oo (,) x ) e. ran (,) |
|
| 104 | 102 103 | eqeltrdi | |- ( x e. RR* -> ( ( -oo [,) x ) i^i RR ) e. ran (,) ) |
| 105 | ineq1 | |- ( v = ( -oo [,) x ) -> ( v i^i RR ) = ( ( -oo [,) x ) i^i RR ) ) |
|
| 106 | 105 | eleq1d | |- ( v = ( -oo [,) x ) -> ( ( v i^i RR ) e. ran (,) <-> ( ( -oo [,) x ) i^i RR ) e. ran (,) ) ) |
| 107 | 104 106 | syl5ibrcom | |- ( x e. RR* -> ( v = ( -oo [,) x ) -> ( v i^i RR ) e. ran (,) ) ) |
| 108 | 107 | rexlimiv | |- ( E. x e. RR* v = ( -oo [,) x ) -> ( v i^i RR ) e. ran (,) ) |
| 109 | 80 108 | sylbi | |- ( v e. ran ( x e. RR* |-> ( -oo [,) x ) ) -> ( v i^i RR ) e. ran (,) ) |
| 110 | 77 109 | jaoi | |- ( ( v e. ran ( x e. RR* |-> ( x (,] +oo ) ) \/ v e. ran ( x e. RR* |-> ( -oo [,) x ) ) ) -> ( v i^i RR ) e. ran (,) ) |
| 111 | 42 110 | sylbi | |- ( v e. ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) -> ( v i^i RR ) e. ran (,) ) |
| 112 | elssuni | |- ( v e. ran (,) -> v C_ U. ran (,) ) |
|
| 113 | unirnioo | |- RR = U. ran (,) |
|
| 114 | 112 113 | sseqtrrdi | |- ( v e. ran (,) -> v C_ RR ) |
| 115 | dfss2 | |- ( v C_ RR <-> ( v i^i RR ) = v ) |
|
| 116 | 114 115 | sylib | |- ( v e. ran (,) -> ( v i^i RR ) = v ) |
| 117 | id | |- ( v e. ran (,) -> v e. ran (,) ) |
|
| 118 | 116 117 | eqeltrd | |- ( v e. ran (,) -> ( v i^i RR ) e. ran (,) ) |
| 119 | 111 118 | jaoi | |- ( ( v e. ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) \/ v e. ran (,) ) -> ( v i^i RR ) e. ran (,) ) |
| 120 | 41 119 | sylbi | |- ( v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) -> ( v i^i RR ) e. ran (,) ) |
| 121 | eleq1 | |- ( u = ( v i^i RR ) -> ( u e. ran (,) <-> ( v i^i RR ) e. ran (,) ) ) |
|
| 122 | 120 121 | syl5ibrcom | |- ( v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) -> ( u = ( v i^i RR ) -> u e. ran (,) ) ) |
| 123 | 122 | rexlimiv | |- ( E. v e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) u = ( v i^i RR ) -> u e. ran (,) ) |
| 124 | 40 123 | sylbi | |- ( u e. ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) -> u e. ran (,) ) |
| 125 | 124 | ssriv | |- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) C_ ran (,) |
| 126 | tgss | |- ( ( ran (,) e. TopBases /\ ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) C_ ran (,) ) -> ( topGen ` ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) ) C_ ( topGen ` ran (,) ) ) |
|
| 127 | 38 125 126 | mp2an | |- ( topGen ` ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |`t RR ) ) C_ ( topGen ` ran (,) ) |
| 128 | 37 127 | eqsstri | |- ( ( ordTop ` <_ ) |`t RR ) C_ ( topGen ` ran (,) ) |
| 129 | 25 128 | eqssi | |- ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR ) |
| 130 | 129 1 | eqtr4i | |- ( topGen ` ran (,) ) = J |