This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgtop | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg3 | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 2 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 = ∪ 𝑦 ) | |
| 3 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) → ∪ 𝑦 ∈ 𝐽 ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → ∪ 𝑦 ∈ 𝐽 ) |
| 5 | 2 4 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝐽 ) ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) |
| 6 | 5 | expl | ⊢ ( 𝐽 ∈ Top → ( ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) ) |
| 7 | 6 | exlimdv | ⊢ ( 𝐽 ∈ Top → ( ∃ 𝑦 ( 𝑦 ⊆ 𝐽 ∧ 𝑥 = ∪ 𝑦 ) → 𝑥 ∈ 𝐽 ) ) |
| 8 | 1 7 | sylbid | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( topGen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) |
| 9 | 8 | ssrdv | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 10 | bastg | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( topGen ‘ 𝐽 ) ) | |
| 11 | 9 10 | eqssd | ⊢ ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 ) |