This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| leordtval.2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | ||
| leordtval.3 | ⊢ 𝐶 = ran (,) | ||
| Assertion | leordtval | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 2 | leordtval.2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 3 | leordtval.3 | ⊢ 𝐶 = ran (,) | |
| 4 | 1 2 | leordtval2 | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 5 | letsr | ⊢ ≤ ∈ TosetRel | |
| 6 | ledm | ⊢ ℝ* = dom ≤ | |
| 7 | 1 | leordtvallem1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 8 | 1 2 | leordtvallem2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 9 | df-ioo | ⊢ (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } ) | |
| 10 | xrltnle | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎 ) ) | |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑎 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑎 ) ) |
| 12 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑏 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) |
| 14 | 13 | adantll | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑦 ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) ↔ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) ) ) |
| 16 | 15 | rabbidva | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } = { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
| 17 | 16 | mpoeq3ia | ⊢ ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( 𝑎 < 𝑦 ∧ 𝑦 < 𝑏 ) } ) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
| 18 | 9 17 | eqtri | ⊢ (,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
| 19 | 18 | rneqi | ⊢ ran (,) = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
| 20 | 3 19 | eqtri | ⊢ 𝐶 = ran ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ( ¬ 𝑦 ≤ 𝑎 ∧ ¬ 𝑏 ≤ 𝑦 ) } ) |
| 21 | 6 7 8 20 | ordtbas2 | ⊢ ( ≤ ∈ TosetRel → ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 22 | 5 21 | ax-mp | ⊢ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) |
| 23 | 22 | fveq2i | ⊢ ( topGen ‘ ( fi ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( topGen ‘ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |
| 24 | 4 23 | eqtri | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( 𝐴 ∪ 𝐵 ) ∪ 𝐶 ) ) |