This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of elcncf with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcncf2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) | |
| 2 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐴 ⊆ ℂ ) | |
| 3 | simprl | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 4 | 2 3 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑥 ∈ ℂ ) |
| 5 | simprr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) | |
| 6 | 2 5 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ ℂ ) |
| 7 | 4 6 | abssubd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( abs ‘ ( 𝑥 − 𝑤 ) ) = ( abs ‘ ( 𝑤 − 𝑥 ) ) ) |
| 8 | 7 | breq1d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 ) ) |
| 9 | simpllr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐵 ⊆ ℂ ) | |
| 10 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 11 | 10 3 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 12 | 9 11 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 13 | 10 5 | ffvelcdmd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐵 ) |
| 14 | 9 13 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℂ ) |
| 15 | 12 14 | abssubd | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 16 | 15 | breq1d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 17 | 8 16 | imbi12d | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝐴 ) → ( ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 19 | 18 | ralbidva | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 22 | 21 | ralbidva | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 23 | 22 | pm5.32da | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 24 | 1 23 | bitrd | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − ( 𝐹 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |