This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccsplit | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ∈ ℝ ) | |
| 2 | simplr2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝐴 ≤ 𝑥 ) | |
| 3 | simpr1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) | |
| 4 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 5 | 4 | sseld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ ) ) |
| 6 | 5 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 8 | ltle | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) | |
| 9 | 3 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 < 𝐶 → 𝑥 ≤ 𝐶 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → 𝑥 ≤ 𝐶 ) |
| 11 | 1 2 10 | 3jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
| 12 | 11 | orcd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝑥 < 𝐶 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 13 | simplr1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) | |
| 14 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝐶 ≤ 𝑥 ) | |
| 15 | simplr3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → 𝑥 ≤ 𝐵 ) | |
| 16 | 13 14 15 | 3jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 17 | 16 | olcd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ∧ 𝐶 ≤ 𝑥 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 18 | 12 17 3 7 | ltlecasei | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 20 | simp1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) | |
| 21 | 20 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ∈ ℝ ) ) |
| 22 | simp2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) | |
| 23 | 22 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝐴 ≤ 𝑥 ) ) |
| 24 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 25 | 20 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 26 | simp1 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ∈ ℝ ) |
| 28 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐵 ∈ ℝ ) | |
| 29 | simp3 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐶 ) | |
| 30 | 29 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 31 | simp3 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐶 ≤ 𝐵 ) | |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝐶 ≤ 𝐵 ) |
| 33 | 25 27 28 30 32 | letrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) → 𝑥 ≤ 𝐵 ) |
| 34 | 33 | 3exp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
| 35 | 24 34 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) ) |
| 36 | 35 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → 𝑥 ≤ 𝐵 ) ) |
| 37 | 21 23 36 | 3jcad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 38 | simp1 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) | |
| 39 | 38 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) ) |
| 40 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 41 | 26 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 42 | 38 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 43 | simp2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝐴 ≤ 𝐶 ) | |
| 44 | 43 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 45 | simp2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐶 ≤ 𝑥 ) | |
| 46 | 45 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐶 ≤ 𝑥 ) |
| 47 | 40 41 42 44 46 | letrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 48 | 47 | 3exp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
| 49 | 24 48 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) ) |
| 50 | 49 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝑥 ) ) |
| 51 | simp3 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) | |
| 52 | 51 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) ) |
| 53 | 39 50 52 | 3jcad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 54 | 37 53 | jaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 55 | 19 54 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 56 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 57 | 56 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 58 | 5 | imdistani | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
| 59 | 58 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) |
| 60 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) | |
| 61 | 60 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 62 | elicc2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 63 | 62 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 64 | 63 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 65 | 61 64 | orbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 66 | 59 65 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ∨ ( 𝑥 ∈ ℝ ∧ 𝐶 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) ) |
| 67 | 55 57 66 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) ) |
| 68 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∨ 𝑥 ∈ ( 𝐶 [,] 𝐵 ) ) ) | |
| 69 | 67 68 | bitr4di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) ) |
| 70 | 69 | eqrdv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐶 ) ∪ ( 𝐶 [,] 𝐵 ) ) ) |