This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | volcn.1 | |- F = ( x e. RR |-> ( vol ` ( A i^i ( B [,] x ) ) ) ) |
|
| Assertion | volcn | |- ( ( A e. dom vol /\ B e. RR ) -> F e. ( RR -cn-> RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volcn.1 | |- F = ( x e. RR |-> ( vol ` ( A i^i ( B [,] x ) ) ) ) |
|
| 2 | simpll | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> A e. dom vol ) |
|
| 3 | iccmbl | |- ( ( B e. RR /\ x e. RR ) -> ( B [,] x ) e. dom vol ) |
|
| 4 | 3 | adantll | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( B [,] x ) e. dom vol ) |
| 5 | inmbl | |- ( ( A e. dom vol /\ ( B [,] x ) e. dom vol ) -> ( A i^i ( B [,] x ) ) e. dom vol ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( A i^i ( B [,] x ) ) e. dom vol ) |
| 7 | mblvol | |- ( ( A i^i ( B [,] x ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol* ` ( A i^i ( B [,] x ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol* ` ( A i^i ( B [,] x ) ) ) ) |
| 9 | inss2 | |- ( A i^i ( B [,] x ) ) C_ ( B [,] x ) |
|
| 10 | mblss | |- ( ( B [,] x ) e. dom vol -> ( B [,] x ) C_ RR ) |
|
| 11 | 4 10 | syl | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( B [,] x ) C_ RR ) |
| 12 | mblvol | |- ( ( B [,] x ) e. dom vol -> ( vol ` ( B [,] x ) ) = ( vol* ` ( B [,] x ) ) ) |
|
| 13 | 4 12 | syl | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( B [,] x ) ) = ( vol* ` ( B [,] x ) ) ) |
| 14 | iccvolcl | |- ( ( B e. RR /\ x e. RR ) -> ( vol ` ( B [,] x ) ) e. RR ) |
|
| 15 | 14 | adantll | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( B [,] x ) ) e. RR ) |
| 16 | 13 15 | eqeltrrd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol* ` ( B [,] x ) ) e. RR ) |
| 17 | ovolsscl | |- ( ( ( A i^i ( B [,] x ) ) C_ ( B [,] x ) /\ ( B [,] x ) C_ RR /\ ( vol* ` ( B [,] x ) ) e. RR ) -> ( vol* ` ( A i^i ( B [,] x ) ) ) e. RR ) |
|
| 18 | 9 11 16 17 | mp3an2i | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol* ` ( A i^i ( B [,] x ) ) ) e. RR ) |
| 19 | 8 18 | eqeltrd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ x e. RR ) -> ( vol ` ( A i^i ( B [,] x ) ) ) e. RR ) |
| 20 | 19 1 | fmptd | |- ( ( A e. dom vol /\ B e. RR ) -> F : RR --> RR ) |
| 21 | simprr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> e e. RR+ ) |
|
| 22 | oveq12 | |- ( ( v = z /\ u = y ) -> ( v - u ) = ( z - y ) ) |
|
| 23 | 22 | ancoms | |- ( ( u = y /\ v = z ) -> ( v - u ) = ( z - y ) ) |
| 24 | 23 | fveq2d | |- ( ( u = y /\ v = z ) -> ( abs ` ( v - u ) ) = ( abs ` ( z - y ) ) ) |
| 25 | 24 | breq1d | |- ( ( u = y /\ v = z ) -> ( ( abs ` ( v - u ) ) < e <-> ( abs ` ( z - y ) ) < e ) ) |
| 26 | fveq2 | |- ( v = z -> ( F ` v ) = ( F ` z ) ) |
|
| 27 | fveq2 | |- ( u = y -> ( F ` u ) = ( F ` y ) ) |
|
| 28 | 26 27 | oveqan12rd | |- ( ( u = y /\ v = z ) -> ( ( F ` v ) - ( F ` u ) ) = ( ( F ` z ) - ( F ` y ) ) ) |
| 29 | 28 | fveq2d | |- ( ( u = y /\ v = z ) -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) = ( abs ` ( ( F ` z ) - ( F ` y ) ) ) ) |
| 30 | 29 | breq1d | |- ( ( u = y /\ v = z ) -> ( ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e <-> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 31 | 25 30 | imbi12d | |- ( ( u = y /\ v = z ) -> ( ( ( abs ` ( v - u ) ) < e -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e ) <-> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) |
| 32 | oveq12 | |- ( ( v = y /\ u = z ) -> ( v - u ) = ( y - z ) ) |
|
| 33 | 32 | ancoms | |- ( ( u = z /\ v = y ) -> ( v - u ) = ( y - z ) ) |
| 34 | 33 | fveq2d | |- ( ( u = z /\ v = y ) -> ( abs ` ( v - u ) ) = ( abs ` ( y - z ) ) ) |
| 35 | 34 | breq1d | |- ( ( u = z /\ v = y ) -> ( ( abs ` ( v - u ) ) < e <-> ( abs ` ( y - z ) ) < e ) ) |
| 36 | fveq2 | |- ( v = y -> ( F ` v ) = ( F ` y ) ) |
|
| 37 | fveq2 | |- ( u = z -> ( F ` u ) = ( F ` z ) ) |
|
| 38 | 36 37 | oveqan12rd | |- ( ( u = z /\ v = y ) -> ( ( F ` v ) - ( F ` u ) ) = ( ( F ` y ) - ( F ` z ) ) ) |
| 39 | 38 | fveq2d | |- ( ( u = z /\ v = y ) -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) |
| 40 | 39 | breq1d | |- ( ( u = z /\ v = y ) -> ( ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e <-> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) |
| 41 | 35 40 | imbi12d | |- ( ( u = z /\ v = y ) -> ( ( ( abs ` ( v - u ) ) < e -> ( abs ` ( ( F ` v ) - ( F ` u ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < e -> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) ) |
| 42 | ssidd | |- ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> RR C_ RR ) |
|
| 43 | recn | |- ( z e. RR -> z e. CC ) |
|
| 44 | recn | |- ( y e. RR -> y e. CC ) |
|
| 45 | abssub | |- ( ( z e. CC /\ y e. CC ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) |
|
| 46 | 43 44 45 | syl2anr | |- ( ( y e. RR /\ z e. RR ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) |
| 47 | 46 | adantl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( z - y ) ) = ( abs ` ( y - z ) ) ) |
| 48 | 47 | breq1d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( z - y ) ) < e <-> ( abs ` ( y - z ) ) < e ) ) |
| 49 | 20 | adantr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> F : RR --> RR ) |
| 50 | ffvelcdm | |- ( ( F : RR --> RR /\ y e. RR ) -> ( F ` y ) e. RR ) |
|
| 51 | ffvelcdm | |- ( ( F : RR --> RR /\ z e. RR ) -> ( F ` z ) e. RR ) |
|
| 52 | 50 51 | anim12dan | |- ( ( F : RR --> RR /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) ) |
| 53 | 49 52 | sylan | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) ) |
| 54 | recn | |- ( ( F ` z ) e. RR -> ( F ` z ) e. CC ) |
|
| 55 | recn | |- ( ( F ` y ) e. RR -> ( F ` y ) e. CC ) |
|
| 56 | abssub | |- ( ( ( F ` z ) e. CC /\ ( F ` y ) e. CC ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) |
|
| 57 | 54 55 56 | syl2anr | |- ( ( ( F ` y ) e. RR /\ ( F ` z ) e. RR ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) |
| 58 | 53 57 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( abs ` ( ( F ` y ) - ( F ` z ) ) ) ) |
| 59 | 58 | breq1d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e <-> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) |
| 60 | 48 59 | imbi12d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) <-> ( ( abs ` ( y - z ) ) < e -> ( abs ` ( ( F ` y ) - ( F ` z ) ) ) < e ) ) ) |
| 61 | simpr2 | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> z e. RR ) |
|
| 62 | oveq2 | |- ( x = z -> ( B [,] x ) = ( B [,] z ) ) |
|
| 63 | 62 | ineq2d | |- ( x = z -> ( A i^i ( B [,] x ) ) = ( A i^i ( B [,] z ) ) ) |
| 64 | 63 | fveq2d | |- ( x = z -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) |
| 65 | fvex | |- ( vol ` ( A i^i ( B [,] z ) ) ) e. _V |
|
| 66 | 64 1 65 | fvmpt | |- ( z e. RR -> ( F ` z ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) |
| 67 | 61 66 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) = ( vol ` ( A i^i ( B [,] z ) ) ) ) |
| 68 | simplll | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> A e. dom vol ) |
|
| 69 | simplr | |- ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) -> B e. RR ) |
|
| 70 | 69 | adantr | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> B e. RR ) |
| 71 | iccmbl | |- ( ( B e. RR /\ z e. RR ) -> ( B [,] z ) e. dom vol ) |
|
| 72 | 70 61 71 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] z ) e. dom vol ) |
| 73 | inmbl | |- ( ( A e. dom vol /\ ( B [,] z ) e. dom vol ) -> ( A i^i ( B [,] z ) ) e. dom vol ) |
|
| 74 | 68 72 73 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) e. dom vol ) |
| 75 | mblvol | |- ( ( A i^i ( B [,] z ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] z ) ) ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) |
|
| 76 | 74 75 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol ` ( A i^i ( B [,] z ) ) ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) |
| 77 | 67 76 | eqtrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) = ( vol* ` ( A i^i ( B [,] z ) ) ) ) |
| 78 | simpr1 | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> y e. RR ) |
|
| 79 | oveq2 | |- ( x = y -> ( B [,] x ) = ( B [,] y ) ) |
|
| 80 | 79 | ineq2d | |- ( x = y -> ( A i^i ( B [,] x ) ) = ( A i^i ( B [,] y ) ) ) |
| 81 | 80 | fveq2d | |- ( x = y -> ( vol ` ( A i^i ( B [,] x ) ) ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) |
| 82 | fvex | |- ( vol ` ( A i^i ( B [,] y ) ) ) e. _V |
|
| 83 | 81 1 82 | fvmpt | |- ( y e. RR -> ( F ` y ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) |
| 84 | 78 83 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) = ( vol ` ( A i^i ( B [,] y ) ) ) ) |
| 85 | simp1 | |- ( ( y e. RR /\ z e. RR /\ y <_ z ) -> y e. RR ) |
|
| 86 | iccmbl | |- ( ( B e. RR /\ y e. RR ) -> ( B [,] y ) e. dom vol ) |
|
| 87 | 69 85 86 | syl2an | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] y ) e. dom vol ) |
| 88 | inmbl | |- ( ( A e. dom vol /\ ( B [,] y ) e. dom vol ) -> ( A i^i ( B [,] y ) ) e. dom vol ) |
|
| 89 | 68 87 88 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) e. dom vol ) |
| 90 | mblvol | |- ( ( A i^i ( B [,] y ) ) e. dom vol -> ( vol ` ( A i^i ( B [,] y ) ) ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) |
|
| 91 | 89 90 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol ` ( A i^i ( B [,] y ) ) ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) |
| 92 | 84 91 | eqtrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) = ( vol* ` ( A i^i ( B [,] y ) ) ) ) |
| 93 | 77 92 | oveq12d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) = ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) ) |
| 94 | 49 | adantr | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> F : RR --> RR ) |
| 95 | 94 61 | ffvelcdmd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` z ) e. RR ) |
| 96 | 77 95 | eqeltrrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) e. RR ) |
| 97 | 70 | leidd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> B <_ B ) |
| 98 | simpr3 | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> y <_ z ) |
|
| 99 | iccss | |- ( ( ( B e. RR /\ z e. RR ) /\ ( B <_ B /\ y <_ z ) ) -> ( B [,] y ) C_ ( B [,] z ) ) |
|
| 100 | 70 61 97 98 99 | syl22anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] y ) C_ ( B [,] z ) ) |
| 101 | sslin | |- ( ( B [,] y ) C_ ( B [,] z ) -> ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) ) |
|
| 102 | 100 101 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) ) |
| 103 | mblss | |- ( ( A i^i ( B [,] z ) ) e. dom vol -> ( A i^i ( B [,] z ) ) C_ RR ) |
|
| 104 | 74 103 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ RR ) |
| 105 | 102 104 | sstrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] y ) ) C_ RR ) |
| 106 | iccssre | |- ( ( y e. RR /\ z e. RR ) -> ( y [,] z ) C_ RR ) |
|
| 107 | 78 61 106 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( y [,] z ) C_ RR ) |
| 108 | 105 107 | unssd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR ) |
| 109 | 94 78 | ffvelcdmd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) e. RR ) |
| 110 | 92 109 | eqeltrrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) e. RR ) |
| 111 | 61 78 | resubcld | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( z - y ) e. RR ) |
| 112 | 110 111 | readdcld | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) e. RR ) |
| 113 | ovolicc | |- ( ( y e. RR /\ z e. RR /\ y <_ z ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) |
|
| 114 | 113 | adantl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( y [,] z ) ) = ( z - y ) ) |
| 115 | 114 111 | eqeltrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( y [,] z ) ) e. RR ) |
| 116 | ovolun | |- ( ( ( ( A i^i ( B [,] y ) ) C_ RR /\ ( vol* ` ( A i^i ( B [,] y ) ) ) e. RR ) /\ ( ( y [,] z ) C_ RR /\ ( vol* ` ( y [,] z ) ) e. RR ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) ) |
|
| 117 | 105 110 107 115 116 | syl22anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) ) |
| 118 | 114 | oveq2d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( vol* ` ( y [,] z ) ) ) = ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) |
| 119 | 117 118 | breqtrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) |
| 120 | ovollecl | |- ( ( ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR /\ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) e. RR /\ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) e. RR ) |
|
| 121 | 108 112 119 120 | syl3anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) e. RR ) |
| 122 | 70 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> B e. RR ) |
| 123 | 61 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> z e. RR ) |
| 124 | 78 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y e. RR ) |
| 125 | simpr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> B <_ y ) |
|
| 126 | 98 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y <_ z ) |
| 127 | simp2 | |- ( ( y e. RR /\ z e. RR /\ y <_ z ) -> z e. RR ) |
|
| 128 | elicc2 | |- ( ( B e. RR /\ z e. RR ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) |
|
| 129 | 69 127 128 | syl2an | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) |
| 130 | 129 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( y e. ( B [,] z ) <-> ( y e. RR /\ B <_ y /\ y <_ z ) ) ) |
| 131 | 124 125 126 130 | mpbir3and | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> y e. ( B [,] z ) ) |
| 132 | iccsplit | |- ( ( B e. RR /\ z e. RR /\ y e. ( B [,] z ) ) -> ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) ) |
|
| 133 | 122 123 131 132 | syl3anc | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) ) |
| 134 | eqimss | |- ( ( B [,] z ) = ( ( B [,] y ) u. ( y [,] z ) ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) |
|
| 135 | 133 134 | syl | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ B <_ y ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) |
| 136 | 78 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> y e. RR ) |
| 137 | 61 | adantr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> z e. RR ) |
| 138 | simpr | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> y <_ B ) |
|
| 139 | 137 | leidd | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> z <_ z ) |
| 140 | iccss | |- ( ( ( y e. RR /\ z e. RR ) /\ ( y <_ B /\ z <_ z ) ) -> ( B [,] z ) C_ ( y [,] z ) ) |
|
| 141 | 136 137 138 139 140 | syl22anc | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> ( B [,] z ) C_ ( y [,] z ) ) |
| 142 | ssun4 | |- ( ( B [,] z ) C_ ( y [,] z ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) |
|
| 143 | 141 142 | syl | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) /\ y <_ B ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) |
| 144 | 70 78 135 143 | lecasei | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) ) |
| 145 | sslin | |- ( ( B [,] z ) C_ ( ( B [,] y ) u. ( y [,] z ) ) -> ( A i^i ( B [,] z ) ) C_ ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) ) |
|
| 146 | 144 145 | syl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) ) |
| 147 | indi | |- ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) = ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) |
|
| 148 | inss2 | |- ( A i^i ( y [,] z ) ) C_ ( y [,] z ) |
|
| 149 | unss2 | |- ( ( A i^i ( y [,] z ) ) C_ ( y [,] z ) -> ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) |
|
| 150 | 148 149 | ax-mp | |- ( ( A i^i ( B [,] y ) ) u. ( A i^i ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) |
| 151 | 147 150 | eqsstri | |- ( A i^i ( ( B [,] y ) u. ( y [,] z ) ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) |
| 152 | 146 151 | sstrdi | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( A i^i ( B [,] z ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) |
| 153 | ovolss | |- ( ( ( A i^i ( B [,] z ) ) C_ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) /\ ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) C_ RR ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) ) |
|
| 154 | 152 108 153 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( vol* ` ( ( A i^i ( B [,] y ) ) u. ( y [,] z ) ) ) ) |
| 155 | 96 121 112 154 119 | letrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) |
| 156 | 96 110 111 | lesubadd2d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) <_ ( z - y ) <-> ( vol* ` ( A i^i ( B [,] z ) ) ) <_ ( ( vol* ` ( A i^i ( B [,] y ) ) ) + ( z - y ) ) ) ) |
| 157 | 155 156 | mpbird | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( vol* ` ( A i^i ( B [,] z ) ) ) - ( vol* ` ( A i^i ( B [,] y ) ) ) ) <_ ( z - y ) ) |
| 158 | 93 157 | eqbrtrd | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) ) |
| 159 | 95 109 | resubcld | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( F ` z ) - ( F ` y ) ) e. RR ) |
| 160 | simplr | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> e e. RR+ ) |
|
| 161 | 160 | rpred | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> e e. RR ) |
| 162 | lelttr | |- ( ( ( ( F ` z ) - ( F ` y ) ) e. RR /\ ( z - y ) e. RR /\ e e. RR ) -> ( ( ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) /\ ( z - y ) < e ) -> ( ( F ` z ) - ( F ` y ) ) < e ) ) |
|
| 163 | 159 111 161 162 | syl3anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( ( ( F ` z ) - ( F ` y ) ) <_ ( z - y ) /\ ( z - y ) < e ) -> ( ( F ` z ) - ( F ` y ) ) < e ) ) |
| 164 | 158 163 | mpand | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( z - y ) < e -> ( ( F ` z ) - ( F ` y ) ) < e ) ) |
| 165 | abssubge0 | |- ( ( y e. RR /\ z e. RR /\ y <_ z ) -> ( abs ` ( z - y ) ) = ( z - y ) ) |
|
| 166 | 165 | adantl | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( abs ` ( z - y ) ) = ( z - y ) ) |
| 167 | 166 | breq1d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( z - y ) ) < e <-> ( z - y ) < e ) ) |
| 168 | ovolss | |- ( ( ( A i^i ( B [,] y ) ) C_ ( A i^i ( B [,] z ) ) /\ ( A i^i ( B [,] z ) ) C_ RR ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) <_ ( vol* ` ( A i^i ( B [,] z ) ) ) ) |
|
| 169 | 102 104 168 | syl2anc | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( vol* ` ( A i^i ( B [,] y ) ) ) <_ ( vol* ` ( A i^i ( B [,] z ) ) ) ) |
| 170 | 169 92 77 | 3brtr4d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( F ` y ) <_ ( F ` z ) ) |
| 171 | 109 95 170 | abssubge0d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) = ( ( F ` z ) - ( F ` y ) ) ) |
| 172 | 171 | breq1d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e <-> ( ( F ` z ) - ( F ` y ) ) < e ) ) |
| 173 | 164 167 172 | 3imtr4d | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR /\ y <_ z ) ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 174 | 31 41 42 60 173 | wlogle | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ ( y e. RR /\ z e. RR ) ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 175 | 174 | anassrs | |- ( ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ y e. RR ) /\ z e. RR ) -> ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 176 | 175 | ralrimiva | |- ( ( ( ( A e. dom vol /\ B e. RR ) /\ e e. RR+ ) /\ y e. RR ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 177 | 176 | anasss | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( e e. RR+ /\ y e. RR ) ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 178 | 177 | ancom2s | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 179 | breq2 | |- ( d = e -> ( ( abs ` ( z - y ) ) < d <-> ( abs ` ( z - y ) ) < e ) ) |
|
| 180 | 179 | rspceaimv | |- ( ( e e. RR+ /\ A. z e. RR ( ( abs ` ( z - y ) ) < e -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 181 | 21 178 180 | syl2anc | |- ( ( ( A e. dom vol /\ B e. RR ) /\ ( y e. RR /\ e e. RR+ ) ) -> E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 182 | 181 | ralrimivva | |- ( ( A e. dom vol /\ B e. RR ) -> A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) |
| 183 | ax-resscn | |- RR C_ CC |
|
| 184 | elcncf2 | |- ( ( RR C_ CC /\ RR C_ CC ) -> ( F e. ( RR -cn-> RR ) <-> ( F : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) ) |
|
| 185 | 183 183 184 | mp2an | |- ( F e. ( RR -cn-> RR ) <-> ( F : RR --> RR /\ A. y e. RR A. e e. RR+ E. d e. RR+ A. z e. RR ( ( abs ` ( z - y ) ) < d -> ( abs ` ( ( F ` z ) - ( F ` y ) ) ) < e ) ) ) |
| 186 | 20 182 185 | sylanbrc | |- ( ( A e. dom vol /\ B e. RR ) -> F e. ( RR -cn-> RR ) ) |