This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufileu | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | ufilmax | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑓 ) → 𝐹 = 𝑓 ) |
| 4 | 3 | eqcomd | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑓 ) → 𝑓 = 𝐹 ) |
| 5 | 4 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 6 | 1 5 | sylan2 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) |
| 8 | ssid | ⊢ 𝐹 ⊆ 𝐹 | |
| 9 | sseq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝐹 ) ) | |
| 10 | 9 | eqreu | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐹 ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 11 | 8 10 | mp3an2 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝐹 ) ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 12 | 7 11 | mpdan | ⊢ ( 𝐹 ∈ ( UFil ‘ 𝑋 ) → ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) |
| 13 | reu6 | ⊢ ( ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ↔ ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) | |
| 14 | ibibr | ⊢ ( ( 𝑓 = 𝑔 → 𝐹 ⊆ 𝑓 ) ↔ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ) | |
| 15 | 14 | pm5.74ri | ⊢ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ) |
| 16 | sseq2 | ⊢ ( 𝑓 = 𝑔 → ( 𝐹 ⊆ 𝑓 ↔ 𝐹 ⊆ 𝑔 ) ) | |
| 17 | 15 16 | bitr3d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ↔ 𝐹 ⊆ 𝑔 ) ) |
| 18 | 17 | rspcva | ⊢ ( ( 𝑔 ∈ ( UFil ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ⊆ 𝑔 ) |
| 19 | 18 | adantll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ⊆ 𝑔 ) |
| 20 | ufilfil | ⊢ ( 𝑔 ∈ ( UFil ‘ 𝑋 ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) | |
| 21 | filelss | ⊢ ( ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑔 ) → 𝑥 ⊆ 𝑋 ) | |
| 22 | 21 | ex | ⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 23 | 20 22 | syl | ⊢ ( 𝑔 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → 𝑥 ⊆ 𝑋 ) ) |
| 25 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 27 | difss | ⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 | |
| 28 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑋 ∈ 𝐹 ) |
| 30 | 29 | difexd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ V ) |
| 31 | elpwg | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) |
| 33 | 27 32 | mpbiri | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 34 | 33 | snssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ 𝒫 𝑋 ) |
| 35 | 26 34 | unssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ) |
| 36 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) | |
| 37 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ≠ ∅ ) |
| 39 | ssn0 | ⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) | |
| 40 | 36 38 39 | sylancr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) |
| 41 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ⊆ 𝑋 ) | |
| 42 | 41 | ad2ant2rl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → 𝑓 ⊆ 𝑋 ) |
| 43 | dfss2 | ⊢ ( 𝑓 ⊆ 𝑋 ↔ ( 𝑓 ∩ 𝑋 ) = 𝑓 ) | |
| 44 | 42 43 | sylib | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( 𝑓 ∩ 𝑋 ) = 𝑓 ) |
| 45 | 44 | sseq1d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑥 ) ) |
| 46 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑓 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑓 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) | |
| 47 | 46 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑓 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 48 | 47 | impcomd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) → ( ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) |
| 50 | 49 | imp | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( 𝑓 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 51 | 45 50 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 52 | 51 | con3d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ 𝐹 ) ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 53 | 52 | expr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 ∈ 𝐹 → ( ¬ 𝑥 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) ) |
| 54 | 53 | com23 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑓 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) ) |
| 55 | 54 | impr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑓 ∈ 𝐹 → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 56 | 55 | imp | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) |
| 57 | ineq2 | ⊢ ( 𝑔 = ( 𝑋 ∖ 𝑥 ) → ( 𝑓 ∩ 𝑔 ) = ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ) | |
| 58 | 57 | neeq1d | ⊢ ( 𝑔 = ( 𝑋 ∖ 𝑥 ) → ( ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 59 | 58 | ralsng | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 60 | inssdif0 | ⊢ ( ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ ) | |
| 61 | 60 | necon3bbii | ⊢ ( ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ↔ ( 𝑓 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) |
| 62 | 59 61 | bitr4di | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 63 | 30 62 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ↔ ¬ ( 𝑓 ∩ 𝑋 ) ⊆ 𝑥 ) ) |
| 65 | 56 64 | mpbird | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ 𝑓 ∈ 𝐹 ) → ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) |
| 66 | 65 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) |
| 67 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 69 | difssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) | |
| 70 | ssdif0 | ⊢ ( 𝑋 ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑥 ) = ∅ ) | |
| 71 | eqss | ⊢ ( 𝑥 = 𝑋 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑥 ) ) | |
| 72 | 71 | simplbi2 | ⊢ ( 𝑥 ⊆ 𝑋 → ( 𝑋 ⊆ 𝑥 → 𝑥 = 𝑋 ) ) |
| 73 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹 ) ) | |
| 74 | 73 | notbid | ⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ∈ 𝐹 ↔ ¬ 𝑋 ∈ 𝐹 ) ) |
| 75 | 74 | biimpcd | ⊢ ( ¬ 𝑥 ∈ 𝐹 → ( 𝑥 = 𝑋 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 76 | 72 75 | sylan9 | ⊢ ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) → ( 𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ⊆ 𝑥 → ¬ 𝑋 ∈ 𝐹 ) ) |
| 78 | 70 77 | biimtrrid | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 ∖ 𝑥 ) = ∅ → ¬ 𝑋 ∈ 𝐹 ) ) |
| 79 | 78 | necon2ad | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) ) |
| 80 | 29 79 | mpd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) |
| 81 | snfbas | ⊢ ( ( ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) ≠ ∅ ∧ 𝑋 ∈ 𝐹 ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) | |
| 82 | 69 80 29 81 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) |
| 83 | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) ) | |
| 84 | 68 82 83 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑓 ∩ 𝑔 ) ≠ ∅ ) ) |
| 85 | 66 84 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 86 | fsubbas | ⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) | |
| 87 | 29 86 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) |
| 88 | 35 40 85 87 | mpbir3and | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 89 | fgcl | ⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 90 | 88 89 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 91 | filssufil | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) | |
| 92 | 90 91 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) |
| 93 | r19.29 | ⊢ ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) ) | |
| 94 | biimp | ⊢ ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝑔 ) ) | |
| 95 | simpll | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 96 | snex | ⊢ { ( 𝑋 ∖ 𝑥 ) } ∈ V | |
| 97 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ V ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) | |
| 98 | 95 96 97 | sylancl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) |
| 99 | ssfii | ⊢ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 101 | ssfg | ⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) | |
| 102 | 88 101 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 103 | 100 102 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 104 | 103 | unssad | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 105 | sstr2 | ⊢ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝐹 ⊆ 𝑓 ) ) | |
| 106 | 104 105 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝐹 ⊆ 𝑓 ) ) |
| 107 | 106 | imim1d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝐹 ⊆ 𝑓 → 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝑓 = 𝑔 ) ) ) |
| 108 | sseq2 | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ↔ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) | |
| 109 | 108 | biimpcd | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑓 = 𝑔 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 110 | 109 | a2i | ⊢ ( ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 111 | 94 107 110 | syl56 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) ) |
| 112 | 111 | impd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 113 | 112 | rexlimdvw | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 114 | 93 113 | syl5 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 115 | 92 114 | mpan2d | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) ) |
| 116 | 115 | imp | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) |
| 117 | 116 | an32s | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑔 ) |
| 118 | snidg | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) | |
| 119 | 30 118 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 120 | elun2 | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) | |
| 121 | 119 120 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) |
| 122 | 103 121 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 123 | 122 | adantlr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 124 | 117 123 | sseldd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) |
| 125 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑔 ∈ ( UFil ‘ 𝑋 ) ) | |
| 126 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → 𝑥 ⊆ 𝑋 ) | |
| 127 | ufilb | ⊢ ( ( 𝑔 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝑔 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) ) | |
| 128 | 125 126 127 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ( ¬ 𝑥 ∈ 𝑔 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝑔 ) ) |
| 129 | 124 128 | mpbird | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 ∈ 𝐹 ) ) → ¬ 𝑥 ∈ 𝑔 ) |
| 130 | 129 | expr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝑔 ) ) |
| 131 | 130 | con4d | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) |
| 132 | 131 | ex | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) ) |
| 133 | 132 | com23 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹 ) ) ) |
| 134 | 24 133 | mpdd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → ( 𝑥 ∈ 𝑔 → 𝑥 ∈ 𝐹 ) ) |
| 135 | 134 | ssrdv | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝑔 ⊆ 𝐹 ) |
| 136 | 19 135 | eqssd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 = 𝑔 ) |
| 137 | simplr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝑔 ∈ ( UFil ‘ 𝑋 ) ) | |
| 138 | 136 137 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ∈ ( UFil ‘ 𝑋 ) ) ∧ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) |
| 139 | 138 | rexlimdva2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( UFil ‘ 𝑋 ) ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ↔ 𝑓 = 𝑔 ) → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) ) |
| 140 | 13 139 | biimtrid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 → 𝐹 ∈ ( UFil ‘ 𝑋 ) ) ) |
| 141 | 12 140 | impbid2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ↔ ∃! 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) ) |