This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reu6 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | 19.28v | ⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 4 | sbequ12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 6 | equequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑦 ) ) | |
| 7 | 5 6 | bibi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) ) ) |
| 8 | equid | ⊢ 𝑦 = 𝑦 | |
| 9 | 8 | tbt | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) ) |
| 10 | simpl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑦 ∈ 𝐴 ) | |
| 11 | 9 10 | sylbir | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ 𝑦 = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
| 12 | 7 11 | biimtrdi | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) ) |
| 13 | 12 | spimvw | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
| 14 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 15 | 14 | bibi1d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 16 | 15 | biimprcd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 17 | 16 | sps | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 18 | 13 17 | jca | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
| 19 | 18 | axc4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
| 20 | biimp | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 21 | 20 | imim2i | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 22 | 21 | impd | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 24 | 3 | biimprcd | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 26 | 25 | imp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝐴 ) |
| 27 | simplr | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) | |
| 28 | simpr | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) | |
| 29 | biimpr | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) | |
| 30 | 27 28 29 | syl6ci | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 31 | 26 30 | jcai | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 33 | 23 32 | impbid | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
| 34 | 33 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) |
| 35 | 19 34 | impbii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
| 36 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) | |
| 37 | 36 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) |
| 38 | 2 35 37 | 3bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 39 | 38 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 40 | eu6 | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ 𝑥 = 𝑦 ) ) | |
| 41 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) | |
| 42 | 39 40 41 | 3bitr4i | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 43 | 1 42 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |