This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝜑 ) ) | |
| 3 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 4 | 3 | imbi1i | ⊢ ( ( 𝑥 ∈ { 𝐴 } → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 6 | 2 5 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 7 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 8 | 1 | pm5.74i | ⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 10 | 9 | a1i | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 11 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) | |
| 12 | 11 | a1i | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 13 | pm5.5 | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) | |
| 14 | 10 12 13 | 3bitrd | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 15 | 7 14 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 16 | 6 15 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |