This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilmax | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 ⊆ 𝐺 ) | |
| 2 | filelss | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ⊆ 𝑋 ) | |
| 3 | 2 | ex | ⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋 ) ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋 ) ) |
| 5 | ufilb | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) | |
| 6 | 5 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 ↔ ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 ) ) |
| 7 | simpl3 | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ 𝐺 ) | |
| 8 | 7 | sseld | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
| 9 | filfbas | ⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → 𝐺 ∈ ( fBas ‘ 𝑋 ) ) | |
| 10 | fbncp | ⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ) → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) | |
| 11 | 10 | ex | ⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐺 → ¬ ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 ) ) |
| 13 | 12 | con2d | ⊢ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺 ) ) |
| 16 | 8 15 | syld | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺 ) ) |
| 17 | 6 16 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺 ) ) |
| 18 | 17 | con4d | ⊢ ( ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ⊆ 𝑋 → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) ) |
| 20 | 19 | com23 | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹 ) ) ) |
| 21 | 4 20 | mpdd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → ( 𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹 ) ) |
| 22 | 21 | ssrdv | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐺 ⊆ 𝐹 ) |
| 23 | 1 22 | eqssd | ⊢ ( ( 𝐹 ∈ ( UFil ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 = 𝐺 ) |