This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005) (Proof shortened by Wolf Lammen, 21-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ibibr | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( 𝜓 ↔ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) | |
| 2 | bicom | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜓 ↔ 𝜑 ) ) | |
| 3 | 1 2 | bitrdi | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ↔ 𝜑 ) ) ) |
| 4 | 3 | pm5.74i | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( 𝜓 ↔ 𝜑 ) ) ) |