This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfbas | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ≠ ∅ ) | |
| 4 | snfil | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ≠ ∅ ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( Fil ‘ 𝐴 ) ) |
| 6 | filfbas | ⊢ ( { 𝐴 } ∈ ( Fil ‘ 𝐴 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ) |
| 8 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ⊆ 𝐵 ) | |
| 9 | elpw2g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝒫 𝐵 ) |
| 12 | 11 | snssd | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ⊆ 𝒫 𝐵 ) |
| 13 | simp3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 14 | fbasweak | ⊢ ( ( { 𝐴 } ∈ ( fBas ‘ 𝐴 ) ∧ { 𝐴 } ⊆ 𝒫 𝐵 ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) ) | |
| 15 | 7 12 13 14 | syl3anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 } ∈ ( fBas ‘ 𝐵 ) ) |