This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqreu.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | eqreu | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqreu.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ralbiim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 → 𝜑 ) ) ) | |
| 3 | 1 | ceqsralv | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 → 𝜑 ) ↔ 𝜓 ) ) |
| 4 | 3 | anbi2d | ⊢ ( 𝐵 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝐵 → 𝜑 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ 𝜓 ) ) ) |
| 5 | 2 4 | bitrid | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ 𝜓 ) ) ) |
| 6 | reu6i | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) | |
| 7 | 6 | ex | ⊢ ( 𝐵 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝑥 = 𝐵 ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 8 | 5 7 | sylbird | ⊢ ( 𝐵 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 9 | 8 | 3impib | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| 10 | 9 | 3com23 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝐵 ) ) → ∃! 𝑥 ∈ 𝐴 𝜑 ) |