This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filufint | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | elintrab | ⊢ ( 𝑥 ∈ ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑥 ∈ 𝑓 ) ) |
| 3 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 5 | difss | ⊢ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 | |
| 6 | filtop | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) | |
| 7 | 6 | difexd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ V ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ V ) |
| 9 | elpwg | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) ) |
| 11 | 5 10 | mpbiri | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝒫 𝑋 ) |
| 12 | 11 | snssd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ 𝒫 𝑋 ) |
| 13 | 4 12 | unssd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ) |
| 14 | ssun1 | ⊢ 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) | |
| 15 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) | |
| 16 | ssn0 | ⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ) |
| 19 | elsni | ⊢ ( 𝑧 ∈ { ( 𝑋 ∖ 𝑥 ) } → 𝑧 = ( 𝑋 ∖ 𝑥 ) ) | |
| 20 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) | |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝑦 ⊆ 𝑋 ) |
| 22 | reldisj | ⊢ ( 𝑦 ⊆ 𝑋 → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ ↔ 𝑦 ⊆ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ ↔ 𝑦 ⊆ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| 24 | dfss4 | ⊢ ( 𝑥 ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) | |
| 25 | 24 | biimpi | ⊢ ( 𝑥 ⊆ 𝑋 → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 26 | 25 | sseq2d | ⊢ ( 𝑥 ⊆ 𝑋 → ( 𝑦 ⊆ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ↔ 𝑦 ⊆ 𝑥 ) ) |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ⊆ ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) ↔ 𝑦 ⊆ 𝑥 ) ) |
| 28 | 23 27 | bitrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ ↔ 𝑦 ⊆ 𝑥 ) ) |
| 29 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑥 ∈ 𝐹 ) | |
| 30 | 29 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) ) ) |
| 31 | 30 | 3imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑦 ⊆ 𝑥 → 𝑥 ∈ 𝐹 ) ) |
| 32 | 28 31 | sylbid | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ → 𝑥 ∈ 𝐹 ) ) |
| 33 | 32 | necon3bd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 34 | 33 | 3exp | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑦 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) ) ) |
| 35 | 34 | com24 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑦 ∈ 𝐹 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) ) ) |
| 36 | 35 | 3imp1 | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) |
| 37 | ineq2 | ⊢ ( 𝑧 = ( 𝑋 ∖ 𝑥 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ) | |
| 38 | 37 | neeq1d | ⊢ ( 𝑧 = ( 𝑋 ∖ 𝑥 ) → ( ( 𝑦 ∩ 𝑧 ) ≠ ∅ ↔ ( 𝑦 ∩ ( 𝑋 ∖ 𝑥 ) ) ≠ ∅ ) ) |
| 39 | 36 38 | syl5ibrcom | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑧 = ( 𝑋 ∖ 𝑥 ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 40 | 39 | expimpd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 = ( 𝑋 ∖ 𝑥 ) ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 41 | 19 40 | sylan2i | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { ( 𝑋 ∖ 𝑥 ) } ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 42 | 41 | ralrimivv | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 43 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 45 | 5 | a1i | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ) |
| 46 | 25 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) = ∅ ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑥 ) |
| 47 | difeq2 | ⊢ ( ( 𝑋 ∖ 𝑥 ) = ∅ → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = ( 𝑋 ∖ ∅ ) ) | |
| 48 | dif0 | ⊢ ( 𝑋 ∖ ∅ ) = 𝑋 | |
| 49 | 47 48 | eqtrdi | ⊢ ( ( 𝑋 ∖ 𝑥 ) = ∅ → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑋 ) |
| 50 | 49 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) = ∅ ) → ( 𝑋 ∖ ( 𝑋 ∖ 𝑥 ) ) = 𝑋 ) |
| 51 | 46 50 | eqtr3d | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) = ∅ ) → 𝑥 = 𝑋 ) |
| 52 | 6 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) = ∅ ) → 𝑋 ∈ 𝐹 ) |
| 53 | 51 52 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝐹 ) |
| 54 | 53 | 3expia | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑥 ) = ∅ → 𝑥 ∈ 𝐹 ) ) |
| 55 | 54 | necon3bd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) ) |
| 56 | 55 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ⊆ 𝑋 → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) ) ) |
| 57 | 56 | com23 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑋 → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) ) ) |
| 58 | 57 | 3imp | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ≠ ∅ ) |
| 59 | 6 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 60 | snfbas | ⊢ ( ( ( 𝑋 ∖ 𝑥 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑥 ) ≠ ∅ ∧ 𝑋 ∈ 𝐹 ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) | |
| 61 | 45 58 59 60 | syl3anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) |
| 62 | fbunfip | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) | |
| 63 | 44 61 62 | syl2anc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { ( 𝑋 ∖ 𝑥 ) } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 64 | 42 63 | mpbird | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 65 | fsubbas | ⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) | |
| 66 | 6 65 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) |
| 67 | 66 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) ) |
| 68 | 13 18 64 67 | mpbir3and | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 69 | fgcl | ⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 71 | filssufil | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) | |
| 72 | snex | ⊢ { ( 𝑋 ∖ 𝑥 ) } ∈ V | |
| 73 | unexg | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { ( 𝑋 ∖ 𝑥 ) } ∈ V ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) | |
| 74 | 72 73 | mpan2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V ) |
| 75 | ssfii | ⊢ ( ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ∈ V → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) | |
| 76 | 74 75 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 78 | 77 | unssad | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 79 | ssfg | ⊢ ( ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) | |
| 80 | 68 79 | syl | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 81 | 78 80 | sstrd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 83 | simpr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) | |
| 84 | 82 83 | sstrd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → 𝐹 ⊆ 𝑓 ) |
| 85 | ufilfil | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 86 | 0nelfil | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 ) | |
| 87 | 85 86 | syl | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 ) |
| 88 | 87 | ad2antlr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ¬ ∅ ∈ 𝑓 ) |
| 89 | disjdif | ⊢ ( 𝑥 ∩ ( 𝑋 ∖ 𝑥 ) ) = ∅ | |
| 90 | 85 | ad2antlr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 91 | simprr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → 𝑥 ∈ 𝑓 ) | |
| 92 | 76 | unssbd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 93 | 92 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) |
| 95 | 68 | adantr | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 96 | 95 79 | syl | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 97 | 94 96 | sstrd | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 98 | 97 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ) |
| 99 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) | |
| 100 | 98 99 | sstrd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → { ( 𝑋 ∖ 𝑥 ) } ⊆ 𝑓 ) |
| 101 | snidg | ⊢ ( ( 𝑋 ∖ 𝑥 ) ∈ V → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) | |
| 102 | 7 101 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 103 | 102 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 104 | 103 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ { ( 𝑋 ∖ 𝑥 ) } ) |
| 105 | 100 104 | sseldd | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) |
| 106 | filin | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ∧ ( 𝑋 ∖ 𝑥 ) ∈ 𝑓 ) → ( 𝑥 ∩ ( 𝑋 ∖ 𝑥 ) ) ∈ 𝑓 ) | |
| 107 | 90 91 105 106 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → ( 𝑥 ∩ ( 𝑋 ∖ 𝑥 ) ) ∈ 𝑓 ) |
| 108 | 89 107 | eqeltrrid | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ∧ 𝑥 ∈ 𝑓 ) ) → ∅ ∈ 𝑓 ) |
| 109 | 108 | expr | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝑥 ∈ 𝑓 → ∅ ∈ 𝑓 ) ) |
| 110 | 88 109 | mtod | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ¬ 𝑥 ∈ 𝑓 ) |
| 111 | 84 110 | jca | ⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 ) → ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) |
| 112 | 111 | exp31 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) ) |
| 113 | 112 | reximdvai | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 114 | 71 113 | syl5 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { ( 𝑋 ∖ 𝑥 ) } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 115 | 70 114 | mpd | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) |
| 116 | 115 | 3expia | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊆ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 117 | filssufil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 ) | |
| 118 | filelss | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) | |
| 119 | 118 | ex | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 120 | 85 119 | syl | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 121 | 120 | con3d | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ( ¬ 𝑥 ⊆ 𝑋 → ¬ 𝑥 ∈ 𝑓 ) ) |
| 122 | 121 | impcom | ⊢ ( ( ¬ 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ¬ 𝑥 ∈ 𝑓 ) |
| 123 | 122 | a1d | ⊢ ( ( ¬ 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → ¬ 𝑥 ∈ 𝑓 ) ) |
| 124 | 123 | ancld | ⊢ ( ( ¬ 𝑥 ⊆ 𝑋 ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑓 → ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 125 | 124 | reximdva | ⊢ ( ¬ 𝑥 ⊆ 𝑋 → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝐹 ⊆ 𝑓 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 126 | 117 125 | syl5com | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ 𝑥 ⊆ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 127 | 126 | adantr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ) → ( ¬ 𝑥 ⊆ 𝑋 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 128 | 116 127 | pm2.61d | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ¬ 𝑥 ∈ 𝐹 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) |
| 129 | 128 | ex | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ) ) |
| 130 | rexanali | ⊢ ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 ∧ ¬ 𝑥 ∈ 𝑓 ) ↔ ¬ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑥 ∈ 𝑓 ) ) | |
| 131 | 129 130 | imbitrdi | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ¬ 𝑥 ∈ 𝐹 → ¬ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑥 ∈ 𝑓 ) ) ) |
| 132 | 131 | con4d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑓 → 𝑥 ∈ 𝑓 ) → 𝑥 ∈ 𝐹 ) ) |
| 133 | 2 132 | biimtrid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } → 𝑥 ∈ 𝐹 ) ) |
| 134 | 133 | ssrdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } ⊆ 𝐹 ) |
| 135 | ssintub | ⊢ 𝐹 ⊆ ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } | |
| 136 | 135 | a1i | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } ) |
| 137 | 134 136 | eqssd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∩ { 𝑓 ∈ ( UFil ‘ 𝑋 ) ∣ 𝐹 ⊆ 𝑓 } = 𝐹 ) |