This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ubth . The function A exhibits a countable collection of sets that are closed, being the inverse image under t of the closed ball of radius k , and by assumption they cover X . Thus, by the Baire Category theorem bcth2 , for some n the set An has an interior, meaning that there is a closed ball { z e. X | ( y D z ) <_ r } in the set. (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| ubthlem.5 | ⊢ 𝑈 ∈ CBan | ||
| ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | ||
| ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | ||
| ubthlem.8 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) | ||
| ubthlem.9 | ⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) | ||
| Assertion | ubthlem1 | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 3 | ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 4 | ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 5 | ubthlem.5 | ⊢ 𝑈 ∈ CBan | |
| 6 | ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | |
| 7 | ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | |
| 8 | ubthlem.8 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) | |
| 9 | ubthlem.9 | ⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) | |
| 10 | rzal | ⊢ ( 𝑇 = ∅ → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) | |
| 11 | 10 | ralrimivw | ⊢ ( 𝑇 = ∅ → ∀ 𝑧 ∈ 𝑋 ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) |
| 12 | rabid2 | ⊢ ( 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) | |
| 13 | 11 12 | sylibr | ⊢ ( 𝑇 = ∅ → 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 14 | 13 | eqcomd | ⊢ ( 𝑇 = ∅ → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = 𝑋 ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑇 = ∅ → ( { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 16 | iinrab | ⊢ ( 𝑇 ≠ ∅ → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 18 | id | ⊢ ( 𝑇 ≠ ∅ → 𝑇 ≠ ∅ ) | |
| 19 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 20 | eqid | ⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) | |
| 21 | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) | |
| 22 | eqid | ⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) | |
| 23 | bnnv | ⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) | |
| 24 | 5 23 | ax-mp | ⊢ 𝑈 ∈ NrmCVec |
| 25 | 3 20 4 21 22 24 6 | blocn2 | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 26 | 1 3 | cbncms | ⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 27 | 5 26 | ax-mp | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |
| 28 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 29 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 30 | 27 28 29 | mp2b | ⊢ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) |
| 31 | 4 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 | 30 31 | ax-mp | ⊢ 𝐽 ∈ ( TopOn ‘ 𝑋 ) |
| 33 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 34 | 33 20 | imsxmet | ⊢ ( 𝑊 ∈ NrmCVec → ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 35 | 6 34 | ax-mp | ⊢ ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) |
| 36 | 21 | mopntopon | ⊢ ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) → ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 37 | 35 36 | ax-mp | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) |
| 38 | iscncl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 39 | 32 37 38 | mp2an | ⊢ ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 40 | 25 39 | sylib | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 41 | 19 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 42 | 41 | simpld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 45 | 44 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 46 | fveq2 | ⊢ ( 𝑦 = ( 𝑡 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | |
| 47 | 46 | breq1d | ⊢ ( 𝑦 = ( 𝑡 ‘ 𝑥 ) → ( ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 48 | 47 | elrab | ⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ↔ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 49 | 45 48 | bitr4di | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) |
| 50 | 49 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 51 | 2fveq3 | ⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) | |
| 52 | 51 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 53 | 52 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 54 | 53 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 55 | ffn | ⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → 𝑡 Fn 𝑋 ) | |
| 56 | elpreima | ⊢ ( 𝑡 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) | |
| 57 | 43 55 56 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 58 | 50 54 57 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 59 | 58 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) |
| 60 | imaeq2 | ⊢ ( 𝑥 = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } → ( ◡ 𝑡 “ 𝑥 ) = ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) | |
| 61 | 60 | eleq1d | ⊢ ( 𝑥 = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } → ( ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 62 | 41 | simprd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 63 | 62 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 64 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 65 | 64 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ ) |
| 66 | 65 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ* ) |
| 67 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 68 | 33 67 | nvzcl | ⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 69 | 6 68 | ax-mp | ⊢ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) |
| 70 | 33 67 2 20 | nvnd | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 71 | 6 70 | mpan | ⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 72 | xmetsym | ⊢ ( ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ∧ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) | |
| 73 | 35 69 72 | mp3an12 | ⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 74 | 71 73 | eqtr4d | ⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ 𝑦 ) = ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ) |
| 75 | 74 | breq1d | ⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 ↔ ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ≤ 𝑘 ) ) |
| 76 | 75 | rabbiia | ⊢ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ≤ 𝑘 } |
| 77 | 21 76 | blcld | ⊢ ( ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ∧ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑘 ∈ ℝ* ) → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 78 | 35 69 77 | mp3an12 | ⊢ ( 𝑘 ∈ ℝ* → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 79 | 66 78 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 80 | 61 63 79 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 81 | 59 80 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 82 | 81 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 83 | iincld | ⊢ ( ( 𝑇 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) | |
| 84 | 18 82 83 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 85 | 17 84 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 86 | 4 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 87 | 30 86 | ax-mp | ⊢ 𝐽 ∈ Top |
| 88 | 32 | toponunii | ⊢ 𝑋 = ∪ 𝐽 |
| 89 | 88 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 90 | 87 89 | ax-mp | ⊢ 𝑋 ∈ ( Clsd ‘ 𝐽 ) |
| 91 | 90 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 92 | 15 85 91 | pm2.61ne | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 93 | 92 9 | fmptd | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 94 | 93 | frnd | ⊢ ( 𝜑 → ran 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) |
| 95 | 88 | cldss2 | ⊢ ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 |
| 96 | 94 95 | sstrdi | ⊢ ( 𝜑 → ran 𝐴 ⊆ 𝒫 𝑋 ) |
| 97 | sspwuni | ⊢ ( ran 𝐴 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝐴 ⊆ 𝑋 ) | |
| 98 | 96 97 | sylib | ⊢ ( 𝜑 → ∪ ran 𝐴 ⊆ 𝑋 ) |
| 99 | arch | ⊢ ( 𝑐 ∈ ℝ → ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 ) | |
| 100 | 99 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 ) |
| 101 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) | |
| 102 | ltle | ⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑐 < 𝑘 → 𝑐 ≤ 𝑘 ) ) | |
| 103 | 101 64 102 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → 𝑐 ≤ 𝑘 ) ) |
| 104 | 103 | impr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) → 𝑐 ≤ 𝑘 ) |
| 105 | 104 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑐 ≤ 𝑘 ) |
| 106 | 42 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 107 | 106 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 108 | 33 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 109 | 6 107 108 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 110 | 109 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 111 | 110 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 112 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑐 ∈ ℝ ) | |
| 113 | simplrl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℕ ) | |
| 114 | 113 64 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ ) |
| 115 | letr | ⊢ ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) | |
| 116 | 111 112 114 115 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 117 | 105 116 | mpan2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 118 | 117 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 119 | 118 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 120 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 121 | 120 | rabex | ⊢ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ V |
| 122 | 9 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ V ) → ( 𝐴 ‘ 𝑘 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 123 | 121 122 | mpan2 | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 124 | 123 | eleq2d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) ) |
| 125 | 52 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 126 | 125 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 127 | 124 126 | bitrdi | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 128 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 129 | 128 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 130 | 129 | bicomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 131 | 127 130 | sylan9bbr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 132 | 93 | ffnd | ⊢ ( 𝜑 → 𝐴 Fn ℕ ) |
| 133 | 132 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 Fn ℕ ) |
| 134 | fnfvelrn | ⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ran 𝐴 ) | |
| 135 | elssuni | ⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ran 𝐴 → ( 𝐴 ‘ 𝑘 ) ⊆ ∪ ran 𝐴 ) | |
| 136 | 134 135 | syl | ⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ⊆ ∪ ran 𝐴 ) |
| 137 | 136 | sseld | ⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 138 | 133 137 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 139 | 131 138 | sylbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 140 | 139 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 141 | 119 140 | syl6d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) ) |
| 142 | 141 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) ) |
| 143 | 100 142 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 144 | 143 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 145 | 144 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 146 | 8 145 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) |
| 147 | dfss3 | ⊢ ( 𝑋 ⊆ ∪ ran 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) | |
| 148 | 146 147 | sylibr | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ ran 𝐴 ) |
| 149 | 98 148 | eqssd | ⊢ ( 𝜑 → ∪ ran 𝐴 = 𝑋 ) |
| 150 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 151 | 1 150 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ 𝑋 ) |
| 152 | ne0i | ⊢ ( ( 0vec ‘ 𝑈 ) ∈ 𝑋 → 𝑋 ≠ ∅ ) | |
| 153 | 24 151 152 | mp2b | ⊢ 𝑋 ≠ ∅ |
| 154 | 4 | bcth2 | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝐴 = 𝑋 ) ) → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 155 | 27 153 154 | mpanl12 | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝐴 = 𝑋 ) → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 156 | 93 149 155 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 157 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 158 | 95 157 | sselid | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 159 | 158 | elpwid | ⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 160 | 93 159 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 161 | 88 | ntrss3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 162 | 87 160 161 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 163 | 162 | sseld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) ) |
| 164 | 88 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ) |
| 165 | 87 160 164 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ) |
| 166 | 4 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 167 | 30 166 | mp3an1 | ⊢ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 168 | 165 167 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 169 | elssuni | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ∪ 𝐽 ) | |
| 170 | 169 88 | sseqtrrdi | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 171 | 165 170 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 172 | 171 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 173 | 88 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 174 | 87 160 173 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 175 | sstr2 | ⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 176 | 174 175 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 177 | 176 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 178 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 179 | 178 30 | jctil | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ) |
| 180 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 181 | 180 | rpxrd | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ* ) |
| 182 | rpxr | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) | |
| 183 | rphalflt | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 ) | |
| 184 | 181 182 183 | 3jca | ⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑥 / 2 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑥 / 2 ) < 𝑥 ) ) |
| 185 | eqid | ⊢ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } | |
| 186 | 4 185 | blsscls2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑥 / 2 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑥 / 2 ) < 𝑥 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 187 | 179 184 186 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 188 | sstr2 | ⊢ ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 189 | 187 188 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 190 | 180 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 191 | breq2 | ⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 ↔ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) ) ) | |
| 192 | 191 | rabbidv | ⊢ ( 𝑟 = ( 𝑥 / 2 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ) |
| 193 | 192 | sseq1d | ⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ↔ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 194 | 193 | rspcev | ⊢ ( ( ( 𝑥 / 2 ) ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 195 | 194 | ex | ⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 196 | 190 195 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 197 | 177 189 196 | 3syld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 198 | 197 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 199 | 172 198 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ( ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 200 | 168 199 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 201 | 200 | ex | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 202 | 163 201 | jcad | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 203 | 202 | eximdv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑦 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 204 | n0 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 205 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 206 | 203 204 205 | 3imtr4g | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ → ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 207 | 206 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 208 | 156 207 | mpd | ⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |