This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinrab | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.28zv | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) ) | |
| 2 | 1 | abbidv | ⊢ ( 𝐴 ≠ ∅ → { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) } ) |
| 3 | df-rab | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } | |
| 4 | 3 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 5 | 4 | iineq2i | ⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
| 6 | iinab | ⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } | |
| 7 | 5 6 | eqtri | ⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) } |
| 8 | df-rab | ⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) } | |
| 9 | 2 7 8 | 3eqtr4g | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |