This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocn.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| blocn.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| blocn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| blocn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| blocn.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| blocn.u | ⊢ 𝑈 ∈ NrmCVec | ||
| blocn.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | blocn2 | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocn.8 | ⊢ 𝐶 = ( IndMet ‘ 𝑈 ) | |
| 2 | blocn.d | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | blocn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 4 | blocn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 5 | blocn.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 6 | blocn.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | blocn.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | eqid | ⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) | |
| 9 | 8 5 | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 10 | 6 7 9 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 11 | 1 2 3 4 5 6 7 8 | blocn | ⊢ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) → ( 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝑇 ∈ 𝐵 ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) → ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 13 | 10 12 | mpcom | ⊢ ( 𝑇 ∈ 𝐵 → 𝑇 ∈ ( 𝐽 Cn 𝐾 ) ) |