This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed intersection of a collection B ( x ) of closed sets is closed. Theorem 6.1(2) of Munkres p. 93. (Contributed by NM, 5-Oct-2006) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iincld | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldss | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 ⊆ ∪ 𝐽 ) |
| 3 | dfss4 | ⊢ ( 𝐵 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = 𝐵 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = 𝐵 ) |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = 𝐵 ) |
| 6 | iineq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = 𝐵 → ∩ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 7 | 5 6 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∩ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 9 | iindif2 | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = ( ∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ) ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐵 ) ) = ( ∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ) ) |
| 11 | 8 10 | eqtr3d | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ( ∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ) ) |
| 12 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 13 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 14 | 13 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 16 | 1 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) |
| 17 | 16 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) |
| 19 | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) → ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) | |
| 20 | 15 18 19 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) |
| 21 | 1 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 22 | 15 20 21 | syl2anc | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ ∪ 𝑥 ∈ 𝐴 ( ∪ 𝐽 ∖ 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 23 | 11 22 | eqeltrd | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |