This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of Kreyszig p. 63. (Contributed by NM, 4-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvnd.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvnd.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nvnd.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| nvnd.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | nvnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐷 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvnd.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvnd.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | nvnd.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | nvnd.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 5 | 1 2 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 7 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 8 | 1 7 3 4 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑍 ) = ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) ) |
| 9 | 6 8 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑍 ) = ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) ) |
| 10 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 11 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 12 | 1 10 11 7 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) |
| 13 | 6 12 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) ) |
| 14 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 15 | 11 2 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 16 | 14 15 | mpan2 | ⊢ ( 𝑈 ∈ NrmCVec → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) = 𝑍 ) |
| 17 | 16 | oveq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝑍 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) ) |
| 19 | 1 10 2 | nv0rid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝑍 ) = 𝐴 ) |
| 20 | 13 18 19 | 3eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) = 𝐴 ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝑍 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 22 | 9 21 | eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 𝐷 𝑍 ) ) |