This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| blcld.3 | ⊢ 𝑆 = { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } | ||
| Assertion | blsscls2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) → 𝑆 ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | blcld.3 | ⊢ 𝑆 = { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } | |
| 3 | simplr3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑅 < 𝑇 ) | |
| 4 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ) | |
| 5 | 4 | ad4ant124 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ) |
| 6 | simplr1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑅 ∈ ℝ* ) | |
| 7 | simplr2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → 𝑇 ∈ ℝ* ) | |
| 8 | xrlelttr | ⊢ ( ( ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ) → ( ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ∧ 𝑅 < 𝑇 ) → ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) | |
| 9 | 8 | expcomd | ⊢ ( ( ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ) → ( 𝑅 < 𝑇 → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) ) |
| 10 | 5 6 7 9 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑅 < 𝑇 → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) ) |
| 11 | 3 10 | mpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) |
| 12 | simp2 | ⊢ ( ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) → 𝑇 ∈ ℝ* ) | |
| 13 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑇 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ↔ ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) | |
| 14 | 13 | an4s | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑇 ∈ ℝ* ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ↔ ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) |
| 15 | 12 14 | sylanr1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ↔ ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ↔ ( 𝑃 𝐷 𝑧 ) < 𝑇 ) ) |
| 17 | 11 16 | sylibrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) ) |
| 18 | 17 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) ) |
| 19 | rabss | ⊢ ( { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) |
| 21 | 2 20 | eqsstrid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ 𝑅 < 𝑇 ) ) → 𝑆 ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑇 ) ) |