This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 2 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) ∈ ℝ* ) | |
| 3 | 2 | 3com23 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) ∈ ℝ* ) |
| 4 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 5 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 6 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 7 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐵 𝐷 𝐵 ) ) ) | |
| 8 | 4 5 6 5 7 | syl13anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐵 𝐷 𝐵 ) ) ) |
| 9 | xmet0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) | |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐵 𝐷 𝐵 ) ) = ( ( 𝐵 𝐷 𝐴 ) +𝑒 0 ) ) |
| 12 | 2 | xaddridd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 0 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 13 | 12 | 3com23 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 0 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐵 𝐷 𝐵 ) ) = ( 𝐵 𝐷 𝐴 ) ) |
| 15 | 8 14 | breqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( 𝐵 𝐷 𝐴 ) ) |
| 16 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐴 ) ) ) | |
| 17 | 4 6 5 6 16 | syl13anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐴 ) ) ) |
| 18 | xmet0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) | |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐴 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) ) |
| 21 | 1 | xaddridd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 22 | 20 21 | eqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐴 𝐷 𝐴 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 23 | 17 22 | breqtrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 24 | 1 3 15 23 | xrletrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |