This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Baire's Category Theorem, version 2: If countably many closed sets cover X , then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | bcth2 | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 3 | simprl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | |
| 4 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 6 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐽 ∈ Top ) |
| 11 | simprr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∪ ran 𝑀 = 𝑋 ) | |
| 12 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 13 | 8 12 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑋 ∈ 𝐽 ) |
| 14 | 11 13 | eqeltrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∪ ran 𝑀 ∈ 𝐽 ) |
| 15 | isopn3i | ⊢ ( ( 𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∪ ran 𝑀 ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∪ ran 𝑀 ) |
| 17 | 16 11 | eqtrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = 𝑋 ) |
| 18 | simplr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑋 ≠ ∅ ) | |
| 19 | 17 18 | eqnetrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) |
| 20 | 1 | bcth | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |
| 21 | 2 3 19 20 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |