This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ubth . Given that there is a closed ball B ( P , R ) in AK , for any x e. B ( 0 , 1 ) , we have P + R x. x e. B ( P , R ) and P e. B ( P , R ) , so both of these have norm ( t ( z ) ) <_ K and so norm ( t ( x ) ) <_ ( norm ( t ( P ) ) + norm ( t ( P + R x. x ) ) ) / R <_ ( K + K ) / R , which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| ubthlem.5 | ⊢ 𝑈 ∈ CBan | ||
| ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | ||
| ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | ||
| ubthlem.8 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) | ||
| ubthlem.9 | ⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) | ||
| ubthlem.10 | ⊢ ( 𝜑 → 𝐾 ∈ ℕ ) | ||
| ubthlem.11 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| ubthlem.12 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| ubthlem.13 | ⊢ ( 𝜑 → { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ⊆ ( 𝐴 ‘ 𝐾 ) ) | ||
| Assertion | ubthlem2 | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ubth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ubth.2 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 3 | ubthlem.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 4 | ubthlem.4 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 5 | ubthlem.5 | ⊢ 𝑈 ∈ CBan | |
| 6 | ubthlem.6 | ⊢ 𝑊 ∈ NrmCVec | |
| 7 | ubthlem.7 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) | |
| 8 | ubthlem.8 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) | |
| 9 | ubthlem.9 | ⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) | |
| 10 | ubthlem.10 | ⊢ ( 𝜑 → 𝐾 ∈ ℕ ) | |
| 11 | ubthlem.11 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 12 | ubthlem.12 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 13 | ubthlem.13 | ⊢ ( 𝜑 → { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ⊆ ( 𝐴 ‘ 𝐾 ) ) | |
| 14 | 10 | nnrpd | ⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
| 15 | 14 14 | rpaddcld | ⊢ ( 𝜑 → ( 𝐾 + 𝐾 ) ∈ ℝ+ ) |
| 16 | 15 12 | rpdivcld | ⊢ ( 𝜑 → ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ+ ) |
| 17 | 16 | rpred | ⊢ ( 𝜑 → ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ ) |
| 18 | oveq2 | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( 𝑃 𝐷 𝑧 ) = ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ↔ ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ≤ 𝑅 ) ) |
| 20 | eleq1 | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( 𝑧 ∈ ( 𝐴 ‘ 𝐾 ) ↔ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ) ) | |
| 21 | 19 20 | imbi12d | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝐴 ‘ 𝐾 ) ) ↔ ( ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ≤ 𝑅 → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 22 | rabss | ⊢ ( { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ⊆ ( 𝐴 ‘ 𝐾 ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝐴 ‘ 𝐾 ) ) ) | |
| 23 | 13 22 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝐴 ‘ 𝐾 ) ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 → 𝑧 ∈ ( 𝐴 ‘ 𝐾 ) ) ) |
| 25 | bnnv | ⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) | |
| 26 | 5 25 | ax-mp | ⊢ 𝑈 ∈ NrmCVec |
| 27 | 26 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑈 ∈ NrmCVec ) |
| 28 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
| 29 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ+ ) |
| 30 | 29 | rpcnd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℂ ) |
| 31 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 32 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 33 | 1 32 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ∈ 𝑋 ) |
| 34 | 27 30 31 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ∈ 𝑋 ) |
| 35 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 36 | 1 35 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ∈ 𝑋 ) → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ) |
| 37 | 27 28 34 36 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ) |
| 38 | 21 24 37 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ≤ 𝑅 → ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ) ) |
| 39 | 1 3 | cbncms | ⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 40 | 5 39 | ax-mp | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |
| 41 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 42 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 43 | 40 41 42 | mp2b | ⊢ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) |
| 44 | 43 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 45 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) = ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) 𝐷 𝑃 ) ) | |
| 46 | 44 28 37 45 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) = ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) 𝐷 𝑃 ) ) |
| 47 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 48 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 49 | 1 47 48 3 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) 𝐷 𝑃 ) = ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) |
| 50 | 27 37 28 49 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) 𝐷 𝑃 ) = ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) ) |
| 51 | 1 35 47 | nvpncan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) = ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) |
| 52 | 27 28 34 51 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) = ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) |
| 53 | 52 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) |
| 54 | 46 50 53 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) |
| 55 | 29 | rprege0d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
| 56 | 1 32 48 | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( 𝑅 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 57 | 27 55 31 56 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( 𝑅 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 58 | 54 57 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) = ( 𝑅 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ) |
| 59 | 30 | mulridd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 · 1 ) = 𝑅 ) |
| 60 | 59 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 = ( 𝑅 · 1 ) ) |
| 61 | 58 60 | breq12d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ≤ 𝑅 ↔ ( 𝑅 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑅 · 1 ) ) ) |
| 62 | 1 48 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 63 | 26 62 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 64 | 63 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ∈ ℝ ) |
| 65 | 1red | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℝ ) | |
| 66 | 64 65 29 | lemul2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 ↔ ( 𝑅 · ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ) ≤ ( 𝑅 · 1 ) ) ) |
| 67 | 61 66 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ≤ 𝑅 ↔ ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 ) ) |
| 68 | breq2 | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ) ) | |
| 69 | 68 | ralbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ) ) |
| 70 | 69 | rabbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ) |
| 71 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 72 | 71 | rabex | ⊢ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ∈ V |
| 73 | 70 9 72 | fvmpt | ⊢ ( 𝐾 ∈ ℕ → ( 𝐴 ‘ 𝐾 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ) |
| 74 | 10 73 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ) |
| 75 | 74 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ↔ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ) ) |
| 76 | 2fveq3 | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ) | |
| 77 | 76 | breq1d | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ↔ ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) |
| 78 | 77 | ralbidv | ⊢ ( 𝑧 = ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) |
| 79 | 78 | elrab | ⊢ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ↔ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) |
| 80 | 75 79 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ↔ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) ) |
| 81 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ ( 𝐴 ‘ 𝐾 ) ↔ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) ) |
| 82 | 38 67 81 | 3imtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 → ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) ) |
| 83 | rsp | ⊢ ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑡 ∈ 𝑇 → ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) | |
| 84 | 83 | com12 | ⊢ ( 𝑡 ∈ 𝑇 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) |
| 85 | 84 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) ) |
| 86 | xmet0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑃 ) = 0 ) | |
| 87 | 43 11 86 | sylancr | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑃 ) = 0 ) |
| 88 | 12 | rpge0d | ⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 89 | 87 88 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑃 𝐷 𝑃 ) ≤ 𝑅 ) |
| 90 | oveq2 | ⊢ ( 𝑧 = 𝑃 → ( 𝑃 𝐷 𝑧 ) = ( 𝑃 𝐷 𝑃 ) ) | |
| 91 | 90 | breq1d | ⊢ ( 𝑧 = 𝑃 → ( ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ↔ ( 𝑃 𝐷 𝑃 ) ≤ 𝑅 ) ) |
| 92 | 91 | elrab | ⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑃 ) ≤ 𝑅 ) ) |
| 93 | 11 89 92 | sylanbrc | ⊢ ( 𝜑 → 𝑃 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ) |
| 94 | 13 93 | sseldd | ⊢ ( 𝜑 → 𝑃 ∈ ( 𝐴 ‘ 𝐾 ) ) |
| 95 | 94 74 | eleqtrd | ⊢ ( 𝜑 → 𝑃 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ) |
| 96 | 2fveq3 | ⊢ ( 𝑧 = 𝑃 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) | |
| 97 | 96 | breq1d | ⊢ ( 𝑧 = 𝑃 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) ) |
| 98 | 97 | ralbidv | ⊢ ( 𝑧 = 𝑃 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) ) |
| 99 | 98 | elrab | ⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝐾 } ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) ) |
| 100 | 95 99 | sylib | ⊢ ( 𝜑 → ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) ) |
| 101 | 100 | simprd | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) |
| 102 | 101 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) |
| 103 | 102 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) |
| 104 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 105 | eqid | ⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) | |
| 106 | eqid | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) | |
| 107 | eqid | ⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) | |
| 108 | 3 105 4 106 107 26 6 | blocn2 | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 109 | 4 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 110 | 43 109 | ax-mp | ⊢ 𝐽 ∈ ( TopOn ‘ 𝑋 ) |
| 111 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 112 | 111 105 | imsxmet | ⊢ ( 𝑊 ∈ NrmCVec → ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 113 | 106 | mopntopon | ⊢ ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) → ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 114 | 6 112 113 | mp2b | ⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) |
| 115 | iscncl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 116 | 110 114 115 | mp2an | ⊢ ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 117 | 108 116 | sylib | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 118 | 104 117 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 119 | 118 | simpld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 120 | 119 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 121 | 120 37 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 122 | 111 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ∈ ℝ ) |
| 123 | 6 121 122 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ∈ ℝ ) |
| 124 | 120 28 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 125 | 111 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ∈ ℝ ) |
| 126 | 6 124 125 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ∈ ℝ ) |
| 127 | 10 | nnred | ⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 128 | 127 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ℝ ) |
| 129 | le2add | ⊢ ( ( ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ∈ ℝ ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ∈ ℝ ) ∧ ( 𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ) ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) | |
| 130 | 123 126 128 128 129 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ≤ 𝐾 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) |
| 131 | 103 130 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) |
| 132 | 52 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( 𝑡 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) |
| 133 | 6 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ NrmCVec ) |
| 134 | eqid | ⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) | |
| 135 | 134 107 | bloln | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) → 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 136 | 26 6 135 | mp3an12 | ⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 137 | 104 136 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 138 | 137 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) |
| 139 | eqid | ⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) | |
| 140 | 1 47 139 134 | lnosub | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝑡 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) |
| 141 | 27 133 138 37 28 140 | syl32anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ( −𝑣 ‘ 𝑈 ) 𝑃 ) ) = ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) |
| 142 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 143 | 1 32 142 134 | lnomul | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ ( 𝑈 LnOp 𝑊 ) ) ∧ ( 𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑡 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) |
| 144 | 27 133 138 30 31 143 | syl32anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) |
| 145 | 132 141 144 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) = ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) |
| 146 | 145 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) = ( 𝑁 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 147 | 119 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 148 | 111 142 2 | nvsge0 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) = ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 149 | 133 55 147 148 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑅 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑡 ‘ 𝑥 ) ) ) = ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 150 | 146 149 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) = ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 151 | 111 139 2 | nvmtri | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑡 ‘ 𝑃 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ) |
| 152 | 133 121 124 151 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ( −𝑣 ‘ 𝑊 ) ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ) |
| 153 | 150 152 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ) |
| 154 | 29 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ ) |
| 155 | 111 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 156 | 6 147 155 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 157 | 154 156 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 158 | 123 126 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 159 | 15 | rpred | ⊢ ( 𝜑 → ( 𝐾 + 𝐾 ) ∈ ℝ ) |
| 160 | 159 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐾 + 𝐾 ) ∈ ℝ ) |
| 161 | letr | ⊢ ( ( ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ∈ ℝ ∧ ( 𝐾 + 𝐾 ) ∈ ℝ ) → ( ( ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ∧ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) | |
| 162 | 157 158 160 161 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ∧ ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) |
| 163 | 153 162 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) + ( 𝑁 ‘ ( 𝑡 ‘ 𝑃 ) ) ) ≤ ( 𝐾 + 𝐾 ) → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) |
| 164 | 131 163 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( 𝐾 + 𝐾 ) ) ) |
| 165 | 156 160 29 | lemuldiv2d | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑅 · ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) ≤ ( 𝐾 + 𝐾 ) ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 166 | 164 165 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 167 | 85 166 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 168 | 167 | adantld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ ( 𝑃 ( +𝑣 ‘ 𝑈 ) ( 𝑅 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) ) ) ≤ 𝐾 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 169 | 82 168 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 170 | 169 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) |
| 171 | 16 | rpxrd | ⊢ ( 𝜑 → ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ* ) |
| 172 | 171 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ* ) |
| 173 | eqid | ⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) | |
| 174 | 1 111 48 2 173 26 6 | nmoubi | ⊢ ( ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ* ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) ) |
| 175 | 119 172 174 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) ) ) |
| 176 | 170 175 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) |
| 177 | 176 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) |
| 178 | brralrspcev | ⊢ ( ( ( ( 𝐾 + 𝐾 ) / 𝑅 ) ∈ ℝ ∧ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ ( ( 𝐾 + 𝐾 ) / 𝑅 ) ) → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) | |
| 179 | 17 177 178 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑡 ) ≤ 𝑑 ) |