This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of an integer multiple of _pi is 0. (Contributed by NM, 11-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinkpi | ⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 𝐾 · π ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) | |
| 2 | picn | ⊢ π ∈ ℂ | |
| 3 | mulcl | ⊢ ( ( 𝐾 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝐾 · π ) ∈ ℂ ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 · π ) ∈ ℂ ) |
| 5 | 4 | addlidd | ⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · π ) ) = ( 𝐾 · π ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) = ( sin ‘ ( 𝐾 · π ) ) ) |
| 7 | 0cn | ⊢ 0 ∈ ℂ | |
| 8 | addcl | ⊢ ( ( 0 ∈ ℂ ∧ ( 𝐾 · π ) ∈ ℂ ) → ( 0 + ( 𝐾 · π ) ) ∈ ℂ ) | |
| 9 | 7 4 8 | sylancr | ⊢ ( 𝐾 ∈ ℤ → ( 0 + ( 𝐾 · π ) ) ∈ ℂ ) |
| 10 | 9 | sincld | ⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ∈ ℂ ) |
| 11 | abssinper | ⊢ ( ( 0 ∈ ℂ ∧ 𝐾 ∈ ℤ ) → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = ( abs ‘ ( sin ‘ 0 ) ) ) | |
| 12 | 7 11 | mpan | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = ( abs ‘ ( sin ‘ 0 ) ) ) |
| 13 | sin0 | ⊢ ( sin ‘ 0 ) = 0 | |
| 14 | 13 | fveq2i | ⊢ ( abs ‘ ( sin ‘ 0 ) ) = ( abs ‘ 0 ) |
| 15 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 16 | 14 15 | eqtri | ⊢ ( abs ‘ ( sin ‘ 0 ) ) = 0 |
| 17 | 12 16 | eqtrdi | ⊢ ( 𝐾 ∈ ℤ → ( abs ‘ ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) ) = 0 ) |
| 18 | 10 17 | abs00d | ⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 0 + ( 𝐾 · π ) ) ) = 0 ) |
| 19 | 6 18 | eqtr3d | ⊢ ( 𝐾 ∈ ℤ → ( sin ‘ ( 𝐾 · π ) ) = 0 ) |