This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulre | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( 𝐵 · 𝐴 ) ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rereb | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) |
| 3 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 7 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 8 | 7 | anim1i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 10 | mulcan | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) | |
| 11 | 5 6 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( ℜ ‘ 𝐴 ) = 𝐴 ) ) |
| 12 | 7 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 13 | 4 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 14 | ax-icn | ⊢ i ∈ ℂ | |
| 15 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 16 | 15 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 17 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 18 | 14 16 17 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 20 | 12 13 19 | adddid | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( 𝐵 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 21 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( 𝐵 · ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 24 | mul12 | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) = ( 𝐵 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 25 | 14 7 16 24 | mp3an3an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) = ( 𝐵 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( 𝐵 · ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 27 | 20 23 26 | 3eqtr4d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) = ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 𝐵 · 𝐴 ) ) = ( ℜ ‘ ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 29 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 30 | 3 29 | sylan2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 32 | 15 31 | sylan2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
| 33 | crre | ⊢ ( ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) → ( ℜ ‘ ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( 𝐵 · ( ℜ ‘ 𝐴 ) ) ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) + ( i · ( 𝐵 · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( 𝐵 · ( ℜ ‘ 𝐴 ) ) ) |
| 35 | 28 34 | eqtr2d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ ( 𝐵 · 𝐴 ) ) ) |
| 36 | 35 | eqeq1d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( ℜ ‘ ( 𝐵 · 𝐴 ) ) = ( 𝐵 · 𝐴 ) ) ) |
| 37 | mulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) | |
| 38 | 7 37 | sylan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
| 39 | rereb | ⊢ ( ( 𝐵 · 𝐴 ) ∈ ℂ → ( ( 𝐵 · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ ( 𝐵 · 𝐴 ) ) = ( 𝐵 · 𝐴 ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ ( 𝐵 · 𝐴 ) ) = ( 𝐵 · 𝐴 ) ) ) |
| 41 | 36 40 | bitr4d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( 𝐵 · 𝐴 ) ∈ ℝ ) ) |
| 42 | 41 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( 𝐵 · 𝐴 ) ∈ ℝ ) ) |
| 43 | 42 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · ( ℜ ‘ 𝐴 ) ) = ( 𝐵 · 𝐴 ) ↔ ( 𝐵 · 𝐴 ) ∈ ℝ ) ) |
| 44 | 2 11 43 | 3bitr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( 𝐵 · 𝐴 ) ∈ ℝ ) ) |