This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number is real iff the exponential of its product with _i has absolute value one. (Contributed by NM, 21-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absefib | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 2 | 1 | eqeq2i | ⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ) |
| 3 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | renegcld | ⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | reef11 | ⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 8 | 2 7 | bitr3id | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 9 | 3 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | 9 | negeq0d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = 0 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 11 | 8 10 | bitr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 12 | ax-icn | ⊢ i ∈ ℂ | |
| 13 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 15 | absef | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) |
| 17 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 18 | 17 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 19 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 20 | 12 9 19 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 22 | 18 20 21 | comraddd | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) ) |
| 24 | adddi | ⊢ ( ( i ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) | |
| 25 | 12 20 18 24 | mp3an2i | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 26 | ixi | ⊢ ( i · i ) = - 1 | |
| 27 | 26 | oveq1i | ⊢ ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( - 1 · ( ℑ ‘ 𝐴 ) ) |
| 28 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 29 | 12 12 9 28 | mp3an12i | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 30 | 9 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 31 | 27 29 30 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 32 | 31 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 33 | 25 32 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 34 | 23 33 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 36 | 4 17 | crred | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 37 | 35 36 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( i · 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 38 | 37 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 39 | 16 38 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 40 | 39 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ) ) |
| 41 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 42 | 11 40 41 | 3bitr4rd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) ) |