This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product with negative is negative of product. Theorem I.12 of Apostol p. 18. (Contributed by NM, 14-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulneg1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | subdir | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) ) |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | 4 | mul02d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 · 𝐵 ) = 0 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) = ( 0 − ( 𝐴 · 𝐵 ) ) ) |
| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( 0 − ( 𝐴 · 𝐵 ) ) ) |
| 8 | df-neg | ⊢ - 𝐴 = ( 0 − 𝐴 ) | |
| 9 | 8 | oveq1i | ⊢ ( - 𝐴 · 𝐵 ) = ( ( 0 − 𝐴 ) · 𝐵 ) |
| 10 | df-neg | ⊢ - ( 𝐴 · 𝐵 ) = ( 0 − ( 𝐴 · 𝐵 ) ) | |
| 11 | 7 9 10 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |