This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | rpcnne0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 3 | divcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐵 · ( 𝐴 / 𝐵 ) ) − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 7 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 9 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 11 | refldivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 13 | 8 10 12 | subdid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = ( ( 𝐵 · ( 𝐴 / 𝐵 ) ) − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 14 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 15 | 6 13 14 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐵 · ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 16 | fraclt1 | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < 1 ) | |
| 17 | 9 16 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < 1 ) |
| 18 | divid | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 / 𝐵 ) = 1 ) | |
| 19 | 2 18 | syl | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 / 𝐵 ) = 1 ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 / 𝐵 ) = 1 ) |
| 21 | 17 20 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < ( 𝐵 / 𝐵 ) ) |
| 22 | 9 11 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℝ ) |
| 23 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 25 | rpregt0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 27 | ltmuldiv2 | ⊢ ( ( ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐵 · ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) < 𝐵 ↔ ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < ( 𝐵 / 𝐵 ) ) ) | |
| 28 | 22 24 26 27 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐵 · ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) < 𝐵 ↔ ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) < ( 𝐵 / 𝐵 ) ) ) |
| 29 | 21 28 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ( 𝐴 / 𝐵 ) − ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) < 𝐵 ) |
| 30 | 15 29 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) |