This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mod B is zero iff A is evenly divisible by B . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = 0 ) ) |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 5 | rpre | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 7 | refldivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 8 | 6 7 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ∈ ℂ ) |
| 10 | 4 9 | subeq0ad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = 0 ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 11 | 2 10 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 12 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 13 | rpcnne0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 15 | divmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 16 | 4 12 14 15 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 17 | eqcom | ⊢ ( ( 𝐴 / 𝐵 ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) | |
| 18 | 16 17 | bitr3di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 = ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) ) |
| 19 | 11 18 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) ) |
| 20 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 21 | flidz | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 23 | 19 22 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |