This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by 0 . Theorem I.6 of Apostol p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999) (Revised by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul02 | ⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | 0cn | ⊢ 0 ∈ ℂ | |
| 3 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 6 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) ∈ ℂ ) |
| 8 | adddi | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) ) | |
| 9 | 2 3 7 8 | mp3an3an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) ) |
| 10 | mul02lem2 | ⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) | |
| 11 | mul12 | ⊢ ( ( 0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 · ( i · 𝑦 ) ) = ( i · ( 0 · 𝑦 ) ) ) | |
| 12 | 2 4 5 11 | mp3an12i | ⊢ ( 𝑦 ∈ ℝ → ( 0 · ( i · 𝑦 ) ) = ( i · ( 0 · 𝑦 ) ) ) |
| 13 | mul02lem2 | ⊢ ( 𝑦 ∈ ℝ → ( 0 · 𝑦 ) = 0 ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑦 ∈ ℝ → ( i · ( 0 · 𝑦 ) ) = ( i · 0 ) ) |
| 15 | 12 14 | eqtrd | ⊢ ( 𝑦 ∈ ℝ → ( 0 · ( i · 𝑦 ) ) = ( i · 0 ) ) |
| 16 | 10 15 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) |
| 17 | 9 16 | eqtrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) |
| 18 | cnre | ⊢ ( 0 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 19 | 2 18 | ax-mp | ⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) |
| 20 | oveq2 | ⊢ ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ↔ ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) ) |
| 22 | 17 21 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ) ) |
| 23 | 22 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ) |
| 24 | 19 23 | ax-mp | ⊢ ( 0 · 0 ) = ( 0 + ( i · 0 ) ) |
| 25 | 0re | ⊢ 0 ∈ ℝ | |
| 26 | mul02lem2 | ⊢ ( 0 ∈ ℝ → ( 0 · 0 ) = 0 ) | |
| 27 | 25 26 | ax-mp | ⊢ ( 0 · 0 ) = 0 |
| 28 | 24 27 | eqtr3i | ⊢ ( 0 + ( i · 0 ) ) = 0 |
| 29 | 17 28 | eqtrdi | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) |
| 30 | oveq2 | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) ) | |
| 31 | 30 | eqeq1d | ⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 0 · 𝐴 ) = 0 ↔ ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
| 32 | 29 31 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) ) |
| 33 | 32 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) |
| 34 | 1 33 | syl | ⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |