This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number whose cosine is one is an integer multiple of 2 _pi . (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coseq1 | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | ⊢ 2 ∈ ℂ | |
| 2 | 2ne0 | ⊢ 2 ≠ 0 | |
| 3 | divcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) | |
| 4 | 1 2 3 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 5 | 4 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( cos ‘ 𝐴 ) ) |
| 6 | halfcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) | |
| 7 | cos2tsin | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
| 9 | 5 8 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = 1 ) ) |
| 11 | 6 | sincld | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 12 | 11 | sqcld | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) |
| 13 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) | |
| 14 | 1 12 13 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | subsub23 | ⊢ ( ( 1 ∈ ℂ ∧ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = 1 ↔ ( 1 − 1 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) | |
| 17 | 15 15 16 | mp3an13 | ⊢ ( ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ → ( ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = 1 ↔ ( 1 − 1 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
| 18 | 14 17 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = 1 ↔ ( 1 − 1 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
| 19 | eqcom | ⊢ ( ( 1 − 1 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ↔ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = ( 1 − 1 ) ) | |
| 20 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 21 | 20 | eqeq2i | ⊢ ( ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = ( 1 − 1 ) ↔ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ) |
| 22 | 19 21 | bitri | ⊢ ( ( 1 − 1 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ↔ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ) |
| 23 | 18 22 | bitrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = 1 ↔ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ) ) |
| 24 | 10 23 | bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ) ) |
| 25 | mul0or | ⊢ ( ( 2 ∈ ℂ ∧ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) → ( ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ↔ ( 2 = 0 ∨ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ) ) ) | |
| 26 | 1 12 25 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ↔ ( 2 = 0 ∨ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ) ) ) |
| 27 | 2 | neii | ⊢ ¬ 2 = 0 |
| 28 | biorf | ⊢ ( ¬ 2 = 0 → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ↔ ( 2 = 0 ∨ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ↔ ( 2 = 0 ∨ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ) ) |
| 30 | 26 29 | bitr4di | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 0 ↔ ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ) ) |
| 31 | sqeq0 | ⊢ ( ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ↔ ( sin ‘ ( 𝐴 / 2 ) ) = 0 ) ) | |
| 32 | 11 31 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = 0 ↔ ( sin ‘ ( 𝐴 / 2 ) ) = 0 ) ) |
| 33 | 24 30 32 | 3bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( sin ‘ ( 𝐴 / 2 ) ) = 0 ) ) |
| 34 | sineq0 | ⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) = 0 ↔ ( ( 𝐴 / 2 ) / π ) ∈ ℤ ) ) | |
| 35 | 6 34 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) = 0 ↔ ( ( 𝐴 / 2 ) / π ) ∈ ℤ ) ) |
| 36 | 1 2 | pm3.2i | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 37 | picn | ⊢ π ∈ ℂ | |
| 38 | pire | ⊢ π ∈ ℝ | |
| 39 | pipos | ⊢ 0 < π | |
| 40 | 38 39 | gt0ne0ii | ⊢ π ≠ 0 |
| 41 | 37 40 | pm3.2i | ⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
| 42 | divdiv1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( 𝐴 / 2 ) / π ) = ( 𝐴 / ( 2 · π ) ) ) | |
| 43 | 36 41 42 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / π ) = ( 𝐴 / ( 2 · π ) ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / π ) ∈ ℤ ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
| 45 | 33 35 44 | 3bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |